|
Fox, N. A. (2004). Temperament and early experience form social behavior. Ann N Y Acad Sci, 1038, 171–178.
Abstract: Individual differences in the way persons respond to stimulation can have important consequences for their ability to learn and their choice of vocation. Temperament is the study of such individual differences, being thought of as the behavioral style of an individual. Common to all approaches in the study of temperament are the notions that it can be identified in infancy, is fairly stable across development, and influences adult personality. We have identified a specific temperament type in infancy that involves heightened distress to novel and unfamiliar stimuli. Infants who exhibit this temperament are likely, as they get older, to display behavioral inhibition-wariness and heightened vigilance of the unfamiliar-particularly in social situations. Our work has also described the underlying biology of this temperament and has linked it to neural systems supporting fear responses in animals. Children displaying behavioral inhibition are at-risk for behavioral problems related to anxiety and social withdrawal.
|
|
|
Grandin, T. (1999). Safe handling of large animals. Occup Med, 14(2), 195–212.
Abstract: The major causes of accidents with cattle, horses, and other grazing animals are: panic due to fear, male dominance aggression, or the maternal aggression of a mother protecting her newborn. Danger is inherent when handling large animals. Understanding their behavior patterns improves safety, but working with animals will never be completely safe. Calm, quiet handling and non-slip flooring are beneficial. Rough handling and excessive use of electric prods increase chances of injury to both people and animals, because fearful animals may jump, kick, or rear. Training animals to voluntarily cooperate with veterinary procedures reduces stress and improves safety. Grazing animals have a herd instinct, and a lone, isolated animal can become agitated. Providing a companion animal helps keep an animal calm.
|
|
|
Stahl, F., & Dorner, G. (1982). Responses of salivary cortisol levels to stress-situations. Endokrinologie, 80(2), 158–162.
Abstract: A procedure is described for determining salivary cortisol levels by a competitive protein-binding assay using horse transcortin. The collection of saliva was performed by means of filter paper-strips. Filter paper samples are more than 5 days stable after air-drying. In this form, the samples could be stored without refrigerator or deep-freezer and, if necessary, sent by post to the laboratory without any special precaution. Stressful situation of either painful or anxious origin were associated with an adequate increase of salivary cortisol levels. The increases were 157 to 230% of the initial or normal values dependent on the kind of stress. The mean values in 4 cases of Cushing's syndrome were 380% and 1 hour after 25 I.U. ACTH 690% higher than those in normal persons. In normal persons, a well-defined circadian rhythm has been observed.
|
|
|
Wich, S. A., & de Vries, H. (2006). Male monkeys remember which group members have given alarm calls. Proc Biol Sci, 273(1587), 735–740.
Abstract: Primates give alarm calls in response to the presence of predators. In some species, such as the Thomas langur (Presbytis thomasi), males only emit alarm calls if there is an audience. An unanswered question is whether the audience's behaviour influences how long the male will continue his alarm calling. We tested three hypotheses that might explain the alarm calling duration of male Thomas langurs: the fatigue, group size and group member behaviour hypotheses. Fatigue and group size did not influence male alarm calling duration. We found that males only ceased calling shortly after all individuals in his group had given at least one alarm call. This shows that males keep track of and thus remember which group members have called.
|
|