|
Carroll, G. L., Matthews, N. S., Hartsfield, S. M., Slater, M. R., Champney, T. H., & Erickson, S. W. (1997). The effect of detomidine and its antagonism with tolazoline on stress-related hormones, metabolites, physiologic responses, and behavior in awake ponies. Vet Surg, 26(1), 69–77.
Abstract: Six ponies were used to investigate the effect of tolazoline antagonism of detomidine on physiological responses, behavior, epinephrine, norepinephrine, cortisol, glucose, and free fatty acids in awake ponies. Each pony had a catheter inserted into a jugular vein 1 hour before beginning the study. Awake ponies were administered detomidine (0.04 mg/kg intravenously [i.v.]) followed 20 minutes later by either tolazoline (4.0 mg/kg i.v.) or saline. Blood samples were drawn from the catheter 5 minutes before detomidine administration (baseline), 5 minutes after detomidine administration, 20 minutes before detomidine administration which was immediately before the administration of tolazoline or saline (time [T] = 0), and at 5, 30, and 60 minutes after injections of tolazoline or saline (T = 5, 30, and 60 minutes, respectively). Compared with heart rate at T = 0, tolazoline antagonism increased heart rate 45% at 5 minutes. There was no difference in heart rate between treatments at 30 minutes. Blood pressure remained stable after tolazoline, while it decreased over time after saline. Compared with concentrations at T = 0, tolazoline antagonism of detomidine in awake ponies resulted in a 55% increase in cortisol at 30 minutes and a 52% increase in glucose at 5 minutes. The change in free fatty acids was different for tolazoline and saline over time. Free fatty acids decreased after detomidine administration. Free fatty acids did not change after saline administration. After tolazoline administration, free fatty acids increased transiently. Tolazoline tended to decrease sedation and analgesia at 15 and 60 minutes postantagonism. Antagonism of detomidine-induced physiological and behavioral effects with tolazoline in awake ponies that were not experiencing pain appears to precipitate a stress response as measured by cortisol, glucose, and free fatty acids. If antagonism of an alpha-agonist is contemplated, the potential effect on hormones and metabolites should be considered.
|
|
|
Jablonska, E. M., Ziolkowska, S. M., Gill, J., Szykula, R., & Faff, J. (1991). Changes in some haematological and metabolic indices in young horses during the first year of jump-training. Equine Vet J, 23(4), 309–311.
Abstract: Effects of an 18 min exercise test, on three separate occasions during a one year jump-training programme, was studied in seven horses. Determinations were carried out on venous blood for packed cell volume, haemoglobin, total protein, lactate and pyruvate, glucose, free fatty acids, insulin, glucagon, blood gases, bicarbonate, pH, aldolase, aspartate aminotransferase and alanine amino-transferase. Exercise caused a slight increase in lactate and pyruvate, total protein, aldolase, alanine aminotransferase, pO2, bicarbonate and pH. Glucose, free fatty acids and pCO2 levels decreased. Training caused no significant difference in these changes. However, during the year, increases in lactate and decreases in pH (resting levels) were observed.
|
|
|
Weik, H., & Altmann, H. J. (1971). [Behavior of blood lipids during fasting in the horse]. Zentralbl Veterinarmed A, 18(2), 131–138.
|
|