|
Andrews, F. M., Ralston, S. L., Sommardahl, C. S., Maykuth, P. L., Green, E. M., White, S. L., et al. (1994). Weight, water, and cation losses in horses competing in a three-day event. J Am Vet Med Assoc, 205(5), 721–724.
Abstract: Body weight of 48 horses competing in a 3-day event was measured the day before the event (baseline), following the dressage phase of the event (day 1), after the endurance phases of the event (day 2), and 18 to 24 hours after the endurance phases (day 3). Plasma sodium and potassium concentrations were measured the evening before, immediately after, and 10 minutes after the endurance phases. Total body water, water loss, and net exchangeable cation loss were then calculated. Body weight and total body water were significantly decreased, compared with baseline values, at all times during the event, and significant water loss was detected. The largest changes were recorded after the endurance phases of the event. Water deficits were still detected 18 to 24 hours after the endurance phases of the event. Mean plasma sodium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, and remained increased after the 10-minute recovery period, presumably because of dehydration. Mean plasma potassium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, but was not increased after the 10-minute recovery period.
|
|
|
Forster, H. V., Pan, L. G., Bisgard, G. E., Flynn, C., & Hoffer, R. E. (1985). Changes in breathing when switching from nares to tracheostomy breathing in awake ponies. J Appl Physiol, 59(4), 1214–1221.
Abstract: We assessed the consequences of respiratory unloading associated with tracheostomy breathing (TBr). Three normal and three carotid body-denervated (CBD) ponies were prepared with chronic tracheostomies that at rest reduced physiological dead space (VD) from 483 +/- 60 to 255 +/- 30 ml and lung resistance from 1.5 +/- 0.14 to 0.5 +/- 0.07 cmH2O . l-1 . s. At rest and during steady-state mild-to-heavy exercise arterial PCO2 (PaCO2) was approximately 1 Torr higher during nares breathing (NBr) than during TBr. Pulmonary ventilation and tidal volume (VT) were greater and alveolar ventilation was less during NBr than TBr. Breathing frequency (f) did not differ between NBr and TBr at rest, but f during exercise was greater during TBr than during NBr. These responses did not differ between normal and CBD ponies. We also assessed the consequences of increasing external VD (300 ml) and resistance (R, 0.3 cmH2O . l-1 . s) by breathing through a tube. At rest and during mild exercise tube breathing caused PaCO2 to transiently increase 2-3 Torr, but 3-5 min later PaCO2 usually was within 1 Torr of control. Tube breathing did not cause f to change. When external R was increased 1 cmH2O . l-1 . s by breathing through a conventional air collection system, f did not change at rest, but during exercise f was lower than during unencumbered breathing. These responses did not differ between normal, CBD, and hilar nerve-denervated ponies, and they did not differ when external VD or R were added at either the nares or tracheostomy.(ABSTRACT TRUNCATED AT 250 WORDS)
|
|
|
Friedrich, A. M., & Zentall, T. R. (2004). Pigeons shift their preference toward locations of food that take more effort to obtain. Behav. Process., 67(3), 405–415.
Abstract: Although animals typically prefer to exert less effort rather than more effort to obtain food, the present research shows that requiring greater effort to obtain food at a particular location appears to increase the value of that location. In Experiment 1, pigeons' initial preference for one feeder was significantly reduced by requiring 1 peck to obtain food from that feeder and requiring 30 pecks to obtain food from the other feeder. In Experiment 2, a similar decrease in preference was not found when pigeons received reinforcement from both feeders independently of the amount of effort required. These results are consistent with the within-trial contrast effect proposed by in which the relative hedonic value of a reward depends on the state of the animal immediately prior to the reward. The greater the improvement from that prior state the greater the value of the reinforcer.
|
|
|
Galloux, P., & Barrey, E. (1997). Components of the total kinetic moment in jumping horses. Equine Vet J Suppl, (23), 41–44.
Abstract: Thirty horses were filmed with a panning camera operating at 50 frames/s as they jumped over a 1.20 x 1.20 m fence. The markers of 9 joints on the horse and 7 joints on the rider were tracked in 2D with the TrackEye system. The centre of gravity and moment of inertia of each segment were calculated using a geometric algorithm and a cylindric model, respectively. The kinetic moment of each part of the horse was calculated after filtering, and resampling of data. This method showed the relative contribution of each body segment to the body overall rotation during the take-off, jump and landing phases. It was found that the trunk, hindlimbs and head-neck had the greatest influence. The coordination between the motion of the body segments allowed the horse to control its angular speed of rotation over the fence. This remained nearly constant during the airborne phase (120 +/- 5 degrees/s). During the airborne phase, the kinetic moment was constant because its value was equal to the moment of the external forces (722 +/- 125 kg x m2/s).
|
|
|
Gutierrez Rincon, J. A., Vives Turco, J., Muro Martinez, I., & Casas Vaque, I. (1992). A comparative study of the metabolic effort expended by horse riders during a jumping competition. Br J Sports Med, 26(1), 33–35.
Abstract: The three main Olympic horse riding disciplines are dressage, jumping, and three-day eventing (including dressage, cross country and jumping). In the jumping discipline (obstacle race), the 'team' (horse rider) is judged under the different conditions that might take place in a varied run. The horse is expected to show power and ability; the rider must show riding skill and good physical condition. However, the different conditions encountered by the rider during competition (duration of event, continuous isometric working level, especially in the inferior trunk, lead us to consider the need for a rider to develop different metabolic pathways to meet the high energy requirements of the competition.
|
|
|
Harkins, J. D., Kamerling, S. G., & Church, G. (1992). Effect of competition on performance of thoroughbred racehorses. J Appl Physiol, 72(3), 836–841.
Abstract: The effect of competition and the influence of age and sex on performance were examined in a study of 18 Thoroughbred racehorses. The horses performed two solo and two competitive runs at 1,200 and 1,600 m for a total of eight runs. No group ran faster during competition, which may have been a reflection of the quality of horses used for this study and their susceptibility to stress-induced impairment of performance. Males showed no significant difference between competitive and solo run times, whereas females were consistently slower during competition. Males ran significantly faster than females in all runs. There was no difference in run times due to age, which may have been due to the high mean age (5.9 yr) of the group. The slower competitive run times may have occurred because of an earlier onset of fatigue when compared with solo runs. Plasma lactate was significantly greater for the 1,200-m competitive than for the solo runs.
|
|
|
Hintz, R. L. (1980). Genetics of performance in the horse. J. Anim Sci., 51(3), 582–594.
Abstract: Criteria used to measure performance, environmental factors that influence performance and estimates of heritability are needed to estimate genetic differences. Published heritability estimates of various measures of performance in the horse are summarized. The average heritability estimates of pulling ability and cutting ability are .25 and .04, respectively. Heritability estimates are .18, .19 and .17 for log of earnings from jumping, 3-day event and dressage performance, respectively. Heritability estimates of performance rates, log of earnings, earnings, handicap weight, best handicap weight, time and best time for the Thoroughbred are .55, .49, .09, .49, .33, .15 and .23, respectively. Heritability estimates of log of earnings, earnings, time and best time for the trotter are .41, .20, .32, and .25, respectively. The heritability estimate of best time for the pacer is .23. The effectiveness of selection will depend on which performance trait is to be improved.
|
|
|
Powers, P., & Harrison, A. (2002). Effects of the rider on the linear kinematics of jumping horses. Sports Biomech, 1(2), 135–146.
Abstract: This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.
|
|
|
Singer, E. R., Barnes, J., Saxby, F., & Murray, J. K. (2008). Injuries in the event horse: Training versus competition. The Veterinary Journal, 175(1), 76–81.
Abstract: Two related studies on injuries sustained by event horses during competition and during training are reported. During the cross-country phase of competition, the most common injuries were lacerations and abrasions to the carpus and stifle. Superficial digital flexor tendonitis and exertional rhabdomyolysis were significantly more common during Cours Complete Internationale (CCI) competitions compared to one-day event (ODE) competitions. The difference in injury types at ODEs and CCI competitions probably relates to the increased athletic demands of the CCI and the closer veterinary observation at these competitions. The results of the training study indicate that 21% of horses intending to compete in a CCI did not start due to injury. Forty-three percent of these injuries involved soft tissue structures with injuries to the superficial digital flexor tendon and the suspensory ligament each accounting for 33%. The most important area for future research is investigation of the risk factors for these career-threatening soft tissue injuries.
|
|
|
Verheyen, K., Price, J., Lanyon, L., & Wood, J. (2006). Exercise distance and speed affect the risk of fracture in racehorses. Bone, 39(6), 1322–1330.
Abstract: In order to gain insight into those training regimens that can minimise the risk of fracture in athletic populations, we conducted a large epidemiological study in racehorses. Thoroughbred racehorses provide a suitable model for studying fracture development and exercise-related risk factors in physically active populations. They represent a homogeneous population, undertaking intensive exercise programmes that are sufficiently heterogeneous to determine those factors that influence injury risk. Daily exercise information was recorded for a cohort of 1178 thoroughbreds that were monitored for up to 2 years. A total of 148 exercise-induced fractures occurred in the study population. Results from a nested case-control study showed a strong interactive effect of exercise distances at different speeds on fracture risk. Horses that exceeded 44 km at canter (< or =14 m/s) and 6 km at gallop (>14 m/s) in a 30-day period were at particularly increased risk of fracture. These distances equate to ca. 7700 bone loading cycles at canter and 880 loading cycles at gallop. Fifty-six fractures occurred in the subset of study horses that were followed since entering training as yearlings, when skeletally immature (n = 335). Cohort analysis of this data set showed that, in previously untrained bones, accumulation of canter exercise increased the risk of fracture (P < or = 0.01), whereas accumulation of high-speed gallop exercise had a protective effect (P < 0.01). However, increasing distances at canter and gallop in short time periods (up to one month) were associated with an increasing fracture risk. All training exercise involves a balance between the risk of fracture inherent in exposure to loading and the beneficial effect that loading has by stimulating bone cells to produce a more robust architecture. Results from our study provide important epidemiological evidence of the effects of physical exercise on bone adaptation and injury risk and can be used to inform the design of safer exercise regimens in physically active populations.
|
|