|
Bast, T. F., Whitney, E., & Benach, J. L. (1973). Considerations on the ecology of several arboviruses in eastern Long Island. Am J Trop Med Hyg, 22(1), 109–115.
|
|
|
Bertram, D. S. (1971). Mosquitoes of British Honduras, with some comments on malaria, and on arbovirus antibodies in man and equines. Trans R Soc Trop Med Hyg, 65(6), 742–762.
|
|
|
Nelson, D. M., Gardner, I. A., Chiles, R. F., Balasuriya, U. B., Eldridge, B. F., Scott, T. W., et al. (2004). Prevalence of antibodies against Saint Louis encephalitis and Jamestown Canyon viruses in California horses. Comp Immunol Microbiol Infect Dis, 27(3), 209–215.
Abstract: Jamestown Canyon (JC) and Saint Louis encephalitis (SLE) viruses are mosquito-transmitted viruses that have long been present in California. The objective of this study was to determine the seroprevalence of these two viruses in horses prior to the introduction of West Nile (WN) virus. Approximately 15% of serum samples collected in 1998 from 425 horses on 44 equine operations horses throughout California had serum antibodies to JC virus, whereas antibodies were not detected to SLE virus. The results indicate that horses in California were commonly infected prior to 1998 with mosquito-transmitted Bunyaviruses that are identical or closely related to JC virus, but not with SLE virus. The different seroprevalence of SLE and JC viruses in horses likely reflects the unique ecology of each virus, and it is predicted that WN virus will have a wider distribution in California than closely related SLE virus.
|
|
|
Sabattini, M. S., Monath, T. P., Mitchell, C. J., Daffner, J. F., Bowen, G. S., Pauli, R., et al. (1985). Arbovirus investigations in Argentina, 1977-1980. I. Historical aspects and description of study sites. Am J Trop Med Hyg, 34(5), 937–944.
Abstract: This is the introductory paper to a series on the ecology of arboviruses in Argentina. Epizootics of equine encephalitis have occurred since at least 1908, principally in the Pampa and Espinal biogeographic zones, with significant economic losses; human cases of encephalitis have been rare or absent. Both western equine and eastern equine encephalitis viruses have been isolated from horses during these epizootics, but the mosquitoes responsible for transmission have not been identified. A number of isolations of Venezuelan equine encephalitis (VEE) virus were reported between 1936 and 1958 in Argentina, but the validity of these findings has been seriously questioned. Nevertheless, serological evidence exists for human infections with a member of the VEE virus complex. Serological surveys conducted in the 1960s indicate a high prevalence of infection of humans and domestic animals with St. Louis encephalitis (SLE), and 2 SLE virus strains have been isolated from rodents. Human disease, however, has rarely been associated with SLE infection. Only 7 isolations of other arboviruses have been described (3 of Maguari, 1 of Aura, 2 of Una, and 1 of an untyped Bunyamwera group virus). In 1977, we began longitudinal field studies in Santa Fe Province, the epicenter of previous equine epizootics, and in 1980 we extended these studies to Chaco and Corrientes provinces. The study sites are described in this paper.
|
|
|
Sudia, W. D., Fernandez, L., Newhouse, V. F., Sanz, R., & Calisher, C. H. (1975). Arbovirus vector ecology studies in Mexico during the 1972 Venezuelan equine encephalitis outbreak. Am J Epidemiol, 101(1), 51–58.
Abstract: Virus vector studies were conducted in the States of Durango, Chihuahua, and Tamaulipas, Mexico, in June and July 1972. Apparently only a low level of Venzuelan equine encephalitis (VEE) virus transmission to equines occured at the time of the study, and the infection was restricted to areas which had not experienced overt activity during the preceding year. The low level of infection was associated with a scarcity of mosquitoes. The IB (epidemic) strain of VEE virus was isolated from two pools of Anopheles pseudopunctipennis (Theo.) and the blood of one symptomatic equine. The low mosquito population, the relatively few equine cases observed, and the absence of reports of VEE human disease from the outbreak area suggested VEE virus persistence through a low-level mosquito-equine transmission cycle. Other studies have already indicated that wild vertebrates play no more than a minor role in outbreaks of epidemic VEE. Mosquito collections made in areas of the states of Durango, Chihuahua, and Tamaulipas, where considerable epidemic activity of VEE had occurred in 1971, failed to reveal evidence of VEE virus persistence. Twenty-nine ioslations of other arboviruses were also made in these studies: including 22 of St. Louis encephalitis virus (SLE), 2 of Flanders virus, 1 of Turlock virus, 1 of Trivittatus virus of the California Group, 1 of western equine encephalitis virus (VEE), and 2 (from Santa Rose) which possibly represent a hitherto unknown virus in the Bunyamwera Group. These are the first reports of SLE virus isolations from mosquitoes in Mexico, and the first demonstration of Trivittatus, VEE Turlock and Flanders viruses in Mexico from any source.
|
|