|
Boray, J. C. (1969). Experimental fascioliasis in Australia. Adv Parasitol, 7, 95–210.
|
|
|
Boucher, J. M., Hanosset, R., Augot, D., Bart, J. M., Morand, M., Piarroux, R., et al. (2005). Detection of Echinococcus multilocularis in wild boars in France using PCR techniques against larval form. Vet Parasitol, 129(3-4), 259–266.
Abstract: Recently, new data have been collected on the distribution and ecology of Echinococcus multilocularis in European countries. Different ungulates species such as pig, goat, sheep, cattle and horse are known to host incomplete development of larval E. multilocularis. We report a case of E. multilocularis portage in two wild boars from a high endemic area in France (Department of Jura). Histological examination was performed and the DNA was isolated from hepatic lesions then amplified by using three PCR methods in two distinct institutes. Molecular characterisation of PCR products revealed 99% nucleotide sequence homology with the specific sequence of the U1 sn RNA gene of E. multilocularis, 99 and 99.9% nucleotide sequence homology with the specific sequence of the cytochrome oxydase gene of Echinococcus genus and 99.9% nucleotide sequence homology with a genomic DNA sequence of Echinococcus genus for the first and the second wild boar, respectively.
|
|
|
Czerlinski, G. H., Erickson, J. O., & Theorell, H. (1979). Chemical relaxation studies on the horse liver alcohol dehydrogenase system. Physiol Chem Phys, 11(6), 537–569.
Abstract: Chemical relaxation studies on the system horse liver alcohol dehydrogenase, nicotinamide adenine dinucleotide, and ethanol were conducted observing fluorescence changes between 400 and 500 nm. Temperature-jump experiments were performed at pH 6.5, 7.0, 8.0, and 9.0; concentration-jump experiments at pH 9.0. The reciprocal of the slowest relaxation time was found to be linearly dependent upon the enzyme concentration for relatively low enzyme concentrations, as predicted earlier. Use of the wide pH-range necessitated expression of the four apparent dissociation constants of the catalytic reaction cycle in terms of pH-independent constants. The system was described in terms of only one (or two) catalysis-linked protons not associated with the electron transfer. Protonic steps in a buffered system are in rapid equilibrium, too fast to be measured with the equipment available. Assuming only two of the four bimolecular reaction steps in the four-step cycle are fast compared to the remaining two, six cases may be considered with six expressions for the reciprocal of the slowest relaxation time. Comparison with the experimental data revealed that the bimolecular reaction steps governing the slowest relaxation time change with pH. Above the effective time resolution of the temperature-lump instrument with fluorescence detection (0.1 msec) only one other relaxation time was detectable and only at pH 9. This relaxation time, found to be independent of the concentration of all reactants within experimental error (r = 10 +/- 5 msec), is most likely due to an interconversion among ternary complexes.
|
|
|
Wilson, M. T., Silvestrini, M. C., Morpurgo, L., & Brunori, M. (1979). Electron transfer kinetics between Rhus vernicifera stellacyanin and cytochrome c (horse heart cytochrome c and Pseudomonas cytochrome c551). J Inorg Biochem, 11(2), 95–100.
Abstract: The electron transfer reactions between Rhus vernicifera stellacyanin and either horse heart cytochrome c or Pseudomonas aeruginosa cytochrome c551 were investigated by rapid reaction techniques. The time course of electron transfer is monophasic under all conditions, and thus consistent with a simple formulation of the reaction. Both stopped-flow and temperature-jump experiments yield equilibrium constants in reasonable agreement with values calculated from the redox potentials. The differences in reaction rate between the two cytochromes and stellacyanin are discussed in terms of the Marcus theory.
|
|