|
Lin, Y. - L., Moolenaar, H., van Weeren, P. R., & van de Lest, C. H. A. (2006). Effect of microcurrent electrical tissue stimulation on equine tenocytes in culture. Am J Vet Res, 67(2), 271–276.
Abstract: OBJECTIVE: To determine effects of microcurrent electrical tissue stimulation (METS) on equine tenocytes cultured from the superficial digital flexor tendon (SDFT). SAMPLE POPULATION: SDFTs were collected from 20 horses at slaughter. PROCEDURE: Tenocytes were isolated following outgrowth from explants and grown in 48-well plates. Four methods of delivering current to the tenocytes with a METS device were tested. Once the optimal method was selected, current consisting of 0 (negative control), 0.05, 0.1, 0.5, 1.0, or 1.5 mA was applied to cells (8 wells/current intensity) once daily for 8 minutes. Cells were treated for 1, 2, or 3 days. Cell proliferation, DNA content, protein content, and apoptosis rate were determined. RESULTS: Application of microcurrent of moderate intensity increased cell proliferation and DNA content, with greater increases with multiple versus single application. Application of microcurrent of moderate intensity once or twice increased protein content, but application 3 times decreased protein content. Application of current a single time did not significantly alter apoptosis rate; however, application twice or 3 times resulted in significant increases in apoptosis rate, and there were significant linear (second order) correlations between current intensity and apoptosis rate when current was applied twice or 3 times. CONCLUSIONS AND CLINICAL RELEVANCE: Results of the present study indicate that microcurrent affects the behavior of equine tenocytes in culture, but that effects may be negative or positive depending on current intensity and number of applications. Therefore, results are far from conclusive with respect to the suitability of using METS to promote tendon healing in horses.
|
|
|
Shettleworth, S. J., & Juergensen, M. R. (1980). Reinforcement and the organization of behavior in golden hamsters: brain stimulation reinforcement for seven action patterns. J Exp Psychol Anim Behav Process, 6(4), 352–375.
Abstract: Golden hamsters were reinforced with intracranial electrical stimulation of the lateral hypothalamus (ICS) for spending time engaging in one of seven topographically defined action patterns (APs). The stimulation used as reinforcer elicited hoarding and/or feeding and supported high rates of bar pressing. In Experiment 1, hamsters were reinforced successively for digging, open rearing, and face washing. Digging increased most in time spent, and face washing increased least. Experiments 2-5 examined these effects further and also showed that “scrabbling,” like digging, was performed a large proportion of the time, almost without interruption, for contingent ICS but that scratching the body with a hindleg and scent-marking showed relatively little effect of contingent ICS, the latter even in an environment that facilitated marking. In Experiment 6, naive hamsters received ICS not contingent on behavior every 30 sec (fixed-time 30-sec schedule). Terminal behaviors that developed on this schedule were APs that were easy to reinforce in the other experiments, but a facultative behavior, face washing, was one not so readily reinforced. Experiment 7 confirmed a novel prediction from Experiment 6--that wall rearing, a terminal AP, would be performed at a high level for contingent ICS. All together, the results point to both motivational factors and associative factors being involved in the considerable differences in performance among different reinforced activities.
|
|
|
Spadavecchia, C., Arendt-Nielsen, L., Spadavecchia, L., Mosing, M., Auer, U., & van den Hoven, R. (2007). Effects of butorphanol on the withdrawal reflex using threshold, suprathreshold and repeated subthreshold electrical stimuli in conscious horses. Vet Anaesth Analg, 34(1), 48–58.
Abstract: OBJECTIVE: To assess the effects of a single intravenous dose of butorphanol (0.1 mg kg(-1)) on the nociceptive withdrawal reflex (NWR) using threshold, suprathreshold and repeated subthreshold electrical stimuli in conscious horses. STUDY DESIGN: 'Unblinded', prospective experimental study. ANIMALS: Ten adult horses, five geldings and five mares, mean body mass 517 kg (range 487-569 kg). METHODS: The NWR was elicited using single transcutaneous electrical stimulation of the palmar digital nerve. Repeated stimulations were applied to evoke temporal summation. Surface electromyography was performed to record and quantify the responses of the common digital extensor muscle to stimulation and behavioural reactions were scored. Before butorphanol administration and at fixed time points up to 2 hours after injection, baseline threshold intensities for NWR and temporal summation were defined and single suprathreshold stimulations applied. Friedman repeated-measures analysis of variance on ranks and Wilcoxon signed-rank test were used with the Student-Newman-Keul's method applied post-hoc. The level of significance (alpha) was set at 0.05. RESULTS: Butorphanol did not modify either the thresholds for NWR and temporal summation or the reaction scores, but the difference between suprathreshold and threshold reflex amplitudes was reduced when single stimulation was applied. Upon repeated stimulation after butorphanol administration, a significant decrease in the relative amplitude was calculated for both the 30-80 and the 80-200 millisecond intervals after each stimulus, and for the whole post-stimulation interval in the right thoracic limb. In the left thoracic limb a decrease in the relative amplitude was found only in the 30-80 millisecond epoch. CONCLUSION: Butorphanol at 0.1 mg kg(-1) has no direct action on spinal Adelta nociceptive activity but may have some supraspinal effects that reduce the gain of the nociceptive system. CLINICAL RELEVANCE: Butorphanol has minimal effect on sharp immediate Adelta-mediated pain but may alter spinal processing and decrease the delayed sensations of pain.
|
|