|
Alexandridis, A. (2009). Pferdgestützte Bewegungstherapie bei Essstörungen. mup, 1, 13–26.
Abstract: Inhalte und Methoden des Natural Horsemanship (nach Pat Parelli) werden beschrieben
und in der Verbindung mit aktuellen bewegungstherapeutischen Behandlungsmethoden
bei Anorexia nervosa, Bulimia nervosa und „Binge-Eating“-Störung dargestellt.
Diese Zusammenführung ergibt eine pferdgestützte bewegungstherapeutische Methode
zur Behandlung von Essstörungen, welche anhand konkreter Praxisbeispiele
beschrieben wird. Der Ausblick auf eine laufende Evaluationsstudie schließt den Artikel
ab.
|
|
|
Arnold, W., Ruf, T., & Kuntz, R. (2006). Seasonal adjustment of energy budget in a large wild mammal, the Przewalski horse (Equus ferus przewalskii) II. Energy expenditure. J Exp Biol, 209(Pt 22), 4566–4573.
Abstract: Many large mammals show pronounced seasonal fluctuations of metabolic rate (MR). It has been argued, based on studies in ruminants, that this variation merely results from different levels of locomotor activity (LA), and heat increment of feeding (HI). However, a recent study in red deer (Cervus elaphus) identified a previously unknown mechanism in ungulates--nocturnal hypometabolism--that contributed significantly to reduced energy expenditure, mainly during late winter. The relative contribution of these different mechanisms to seasonal adjustments of MR is still unknown, however. Therefore, in the study presented here we quantified for the first time the independent contribution of thermoregulation, LA and HI to heart rate (f(H)) as a measure of MR in a free-roaming large ungulate, the Przewalski horse or Takhi (Equus ferus przewalskii Poljakow). f(H) varied periodically throughout the year with a twofold increase from a mean of 44 beats min(-1) during December and January to a spring peak of 89 beats min(-1) at the beginning of May. LA increased from 23% per day during December and January to a mean level of 53% per day during May, and declined again thereafter. Daily mean subcutaneous body temperature (T(s)) declined continuously during winter and reached a nadir at the beginning of April (annual range was 5.8 degrees C), well after the annual low of air temperature and LA. Lower T(s) during winter contributed considerably to the reduction in f(H). In addition to thermoregulation, f(H) was affected by reproduction, LA, HI and unexplained seasonal variation, presumably reflecting to some degree changes in organ mass. The observed phase relations of seasonal changes indicate that energy expenditure was not a consequence of energy uptake but is under endogenous control, preparing the organism well in advance of seasonal energetic demands.
|
|
|
Biro, D., Inoue-Nakamura, N., Tonooka, R., Yamakoshi, G., Sousa, C., & Matsuzawa, T. (2003). Cultural innovation and transmission of tool use in wild chimpanzees: evidence from field experiments. Anim. Cogn., 6(4), 213–223.
Abstract: Chimpanzees (Pan troglodytes) are the most proficient and versatile users of tools in the wild. How such skills become integrated into the behavioural repertoire of wild chimpanzee communities is investigated here by drawing together evidence from three complementary approaches in a group of oil-palm nut- ( Elaeis guineensis) cracking chimpanzees at Bossou, Guinea. First, extensive surveys of communities adjacent to Bossou have shown that population-specific details of tool use, such as the selection of species of nuts as targets for cracking, cannot be explained purely on the basis of ecological differences. Second, a 16-year longitudinal record tracing the development of nut-cracking in individual chimpanzees has highlighted the importance of a critical period for learning (3-5 years of age), while the similar learning contexts experienced by siblings have been found to result in near-perfect (13 out of 14 dyads) inter-sibling correspondence in laterality. Third, novel data from field experiments involving the introduction of unfamiliar species of nuts to the Bossou group illuminates key aspects of both cultural innovation and transmission. We show that responses of individuals toward the novel items differ markedly with age, with juveniles being the most likely to explore. Furthermore, subjects are highly specific in their selection of conspecifics as models for observation, attending to the nut-cracking activities of individuals in the same age group or older, but not younger than themselves. Together with the phenomenon of inter-community migration, these results demonstrate a mechanism for the emergence of culture in wild chimpanzees.
|
|
|
Francis-Smith, K., & Wood-Gush, D. G. M. (1977). Copropgagia as seen in thoroughbred foals. Equine Vet J, 9(3), 155–157.
Abstract: Four Thoroughbred foals were seen to quickly eat part of the faeces deposited by their own dams on some 40 per cent of the mare-defaecating occasions observed between the second and fifth week after birth. They did not do it before or after this period. This behaviour was thought to be a feeding pattern which formed a normal part of the foal's development.
|
|
|
Hirata, S., & Celli, M. L. (2003). Role of mothers in the acquisition of tool-use behaviours by captive infant chimpanzees. Anim. Cogn., 6(4), 235–244.
Abstract: This article explores the maternal role in the acquisition of tool-use behaviours by infant chimpanzees ( Pan troglodytes). A honey-fishing task, simulating ant/termite fishing found in the wild, was introduced to three dyads of experienced mother and naive infant chimpanzees. Four fishing sites and eight sets of 20 objects to be used as tools, not all appropriate, were available. Two of the mothers constantly performed the task, using primarily two kinds of tools; the three infants observed them. The infants, regardless of the amount of time spent observing, successfully performed the task around the age of 20-22 months, which is earlier than has been recorded in the wild. Two of the infants used the same types of tools that the adults predominantly used, suggesting that tool selectivity is transmitted. The results also show that adults are tolerant of infants, even if unrelated; infants were sometimes permitted to lick the tools, or were given the tools, usually without honey, as well as permitted to observe the adult performances closely.
|
|
|
Houpt, K. A. (1990). Ingestive behavior. Vet Clin North Am Equine Pract, 6(2), 319–337.
Abstract: In summary, horses spend 60% or more of their time eating when grazing or when feed is available free choice. Grasses are their preferred food, but they supplement the grass with herbs and woody plants. Sweetened mixtures of oats and corn are the most preferred concentrate. Horses can increase or decrease the time spent eating and amount eaten to maintain caloric intake. Their intake is stimulated by drugs such as diazepam and by the presence of other horses. Horses stop eating when gastric osmolality increases; increases in plasma osmolality, protein, and glucose accompany digestion. Foals eat several times an hour and begin sampling solid food at the same time that their dam is eating. Several areas of particular importance to the equine industry have not been investigated. These areas include the effect of exercise on short- and long-term food intake and the influence of reproductive state on the feeding of mares.
|
|
|
Houpt, K. A., Perry, P. J., Hintz, H. F., & Houpt, T. R. (1988). Effect of meal frequency on fluid balance and behavior of ponies. Physiol. Behav., 42(5), 401–407.
Abstract: Twelve ponies were fed their total daily ration either as one large meal or divided into six small meals. Pre- and post-feeding behavior was recorded six times a day. Blood samples were taken for 30 min before and two hr after the meal. Plasma protein increased from 7.0 to a peak of 7.3 g/dl with small meals and from 7.3 to 8.1 g/dl with large meals, and returned to pre-feeding levels by 90 min post-feeding. Hematocrit rose from 33.3 to 34.1% with small meals and from 33.0 to 36.0% with large meals. These rapid and short-lived increases indicate a decrease in plasma volume. Plasma osmolality rose with feeding from 283 to 285 mosmoles/kg with small meals and from 281 to 288 mosmoles/kg with large meals. Water availability had no significant effect on blood changes. Digestibility and rate of passage were measured with chromic oxide, but there were no differences. Vocalizing (neighing) and walking occurred more often before than after feeding, while eating bedding and engaging in other oral behaviors were more frequent after feeding.
|
|
|
Houpt, T. R. (1985). The physiological determination of meal size in pigs. Proc Nutr Soc, 44(2), 323–330.
|
|
|
Jeong, S., Han, M., Lee, H., Kim, M., Kim, J., Nicol, C. J., et al. (2004). Effects of fenofibrate on high-fat diet-induced body weight gain and adiposity in female C57BL/6J mice. Metabolism, 53(10), 1284–1289.
Abstract: Our previous study suggested that fenofibrate affects obesity and lipid metabolism in a sexually dimorphic manner in part through the differential activation of hepatic peroxisome proliferator-activated receptor alpha (PPARalpha) in male and female C57BL/6J mice. To determine whether fenofibrate reduces body weight gain and adiposity in female sham-operated (Sham) and ovariectomized (OVX) C57BL/6J mice, the effects of fenofibrate on not only body weight, white adipose tissue (WAT) mass, and food intake, but also the expression of both leptin and PPARalpha target genes were measured. Compared to their respective low-fat diet-fed controls, both Sham and OVX mice exhibited increases in body weight and WAT mass when fed a high-fat diet. Fenofibrate treatment decreased body weight gain and WAT mass in OVX, but not in Sham mice. Furthermore, fenofibrate increased the mRNA levels of PPARalpha target genes encoding peroxisomal enzymes involved in fatty acid beta-oxidation, and reduced apolipoprotein C-III (apo C-III) mRNA, all of which were expressed at higher levels in OVX compared to Sham mice. However, leptin mRNA levels were found to positively correlate with WAT mass, and food intake was not changed in either OVX or Sham mice following fenofibrate treatment. These results suggest that fenofibrate differentially regulates body weight and adiposity due in part to differences in PPARalpha activation, but not to differences in leptin production, between female OVX and Sham mice.
|
|
|
Krebs, J. R., Clayton, N. S., Hampton, R. R., & Shettleworth, S. J. (1995). Effects of photoperiod on food-storing and the hippocampus in birds. Neuroreport, 6(12), 1701–1704.
Abstract: Birds that store food have a relatively large hippocampus compared to non-storing species. The hippocampus shows seasonal differences in neurogenesis and volume in black-capped chikadees (Parus atricapillus) taken from the wild at different times of year. We compared hippocampal volumes in black-capped chickadees captured at the same time but differing in food-storing behaviour because of manipulations of photoperiod in the laboratory. Differences in food-storing behaviour were not accompanied by differences in the volume of the hippocampus. Hippocampal volumes also did not differ between two groups of a non-food-storing control species, house sparrows (Passer domesticus), exposed to the same conditions as the chickadees.
|
|