|
Beaver, B. V. (1986). Aggressive behavior problems. Vet Clin North Am Equine Pract, 2(3), 635–644.
Abstract: Accurate diagnosis of the cause of aggression in horses is essential to determining the appropriate course of action. The affective forms of aggression include fear-induced, pain-induced, intermale, dominance, protective, maternal, learned, and redirected aggressions. Non-affective aggression includes play and sex-related forms. Irritable aggression and hypertestosteronism in mares are medical problems, whereas genetic factors, brain dysfunction, and self-mutilation are also concerns.
|
|
|
Cheney, D. L., & Seyfarth, R. M. (1990). The representation of social relations by monkeys. Cognition, 37(1-2), 167–196.
Abstract: Monkeys recognize the social relations that exist among others in their group. They know who associates with whom, for example, and other animals' relative dominance ranks. In addition, monkeys appear to compare types of social relations and make same/different judgments about them. In captivity, longtailed macaques (Macaca fascicularis) trained to recognize the relation between one adult female and her offspring can identify the same relation among other mother-offspring pairs, and distinguish this relation from bonds between individuals who are related in a different way. In the wild, if a vervet monkey (Cercopithecus aethiops) has seen a fight between a member of its own family and a member of Family X, this increases the likelihood that it will act aggressively toward another member of Family X. Vervets act as if they recognize some similarity between their own close associates and the close associates of others. To make such comparisons the monkeys must have some way of representing the properties of social relationships. We discuss the adaptive value of such representations, the information they contain, their structure, and their limitations.
|
|
|
Cheney, D. L., Seyfarth, R. M., & Silk, J. B. (1995). The responses of female baboons (Papio cynocephalus ursinus) to anomalous social interactions: evidence for causal reasoning? J Comp Psychol, 109(2), 134–141.
Abstract: Baboons' (Papio cynocephalus ursinus) understanding of cause-effect relations in the context of social interactions was examined through use of a playback experiment. Under natural conditions, dominant female baboons often grunt to more subordinate mothers when interacting with their infants. Mothers occasionally respond to these grunts by uttering submissive fear barks. Subjects were played causally inconsistent call sequences in which a lower ranking female apparently grunted to a higher ranking female, and the higher ranking female apparently responded with fear barks. As a control, subjects heard a sequence made causally consistent by the inclusion of grunts from a 3rd female that was dominant to both of the others. Subjects responded significantly more strongly to the causally inconsistent sequences, suggesting that they recognized the factors that cause 1 individual to give submissive vocalizations to another.
|
|
|
de Waal, F. B. (1996). Macaque social culture: development and perpetuation of affiliative networks. J Comp Psychol, 110(2), 147–154.
Abstract: Maternal affiliative relations may be transmitted to offspring, similar to the way in which maternal rank determines offspring rank. The development of 23 captive female rhesus monkeys (Macaca mulatta) was followed from the day of birth until adulthood. A multivariate analysis compared relations among age peers with affiliative relations, kinship, and rank distance among mothers. Maternal relations were an excellent predictor of affiliative relations among daughters, explaining up to 64% of the variance. Much of this predictability was due to the effect of kinship. However, after this variable had been controlled, significant predictability persisted. For relations of female subjects with male peers, on the other hand, maternal relations had no significant predictive value beyond the effect of kinship. One possible explanation of these results is that young rhesus females copy maternal social preferences through a process of cultural learning.
|
|
|
de Waal, F. B., & Luttrell, L. M. (1986). The similarity principle underlying social bonding among female rhesus monkeys. Folia Primatol (Basel), 46(4), 215–234.
Abstract: Twenty adult female rhesus monkeys (Macaca mulatta) were observed over a three-year period. They lived in a mixed captive group with kinship relations known for three generations. The study's aim was to test Seyfarth's [J. theor. Biol. 65: 671-698, 1977] model of rank-related grooming and to investigate two other possible determinants of social bonding, i.e. relative age and the group's stratification into two social classes. Data on affiliation, coalitions, and social competition were collected by means of both focal observation and instantaneous time sampling. Whereas certain elements of the existing model were confirmed, its explanatory principles were not. Social competition did not result in more contact among close-ranking females (the opposite effect was found), and the relation between affiliative behavior and coalitions was more complex than predicted. Based on multivariate analyses and a comparison of theoretical models, we propose a simpler, more encompassing principle underlying interfemale attraction. According to this 'similarity principle', rhesus females establish bonds with females whom they most resemble. The similarity may concern genetical and social background, age, hierarchical position and social class. Effects of these four factors were independently demonstrated. The most successful model assumed that similarity factors influence female bonding in a cumulative fashion.
|
|
|
de Waal, F. B. M., & Davis, J. M. (2003). Capuchin cognitive ecology: cooperation based on projected returns. Neuropsychologia, 41(2), 221–228.
Abstract: Stable cooperation requires that each party's pay-offs exceed those available through individual action. The present experimental study on brown capuchin monkeys (Cebus apella) investigated if decisions about cooperation are (a) guided by the amount of competition expected to follow the cooperation, and (b) made instantaneously or only after a period of familiarization. Pairs of adult monkeys were presented with a mutualistic cooperative task with variable opportunities for resource monopolization (clumped versus dispersed rewards), and partner relationships (kin versus nonkin). After pre-training, each pair of monkeys (N=11) was subjected to six tests, consisting of 15 2 min trials each, with rewards available to both parties. Clumped reward distribution had an immediate negative effect on cooperation: this effect was visible right from the start, and remained visible even if clumped trials alternated with dispersed trials. The drop in cooperation was far more dramatic for nonkin than kin, which was explained by the tendency of dominant nonkin to claim more than half of the rewards under the clumped condition. The immediacy of responses suggests a decision-making process based on predicted outcome of cooperation. Decisions about cooperation thus take into account both the opportunity for and the likelihood of subsequent competition over the spoils.
|
|
|
Dow, M., Ewing, A. W., & Sutherland, I. (1976). Studies on the behaviour of cyprinodont fish. III. The temporal patterning of aggression in Aphyosemion striatum (Boulenger). Behaviour, 59(3-4), 252–268.
|
|
|
Fujita, K., Kuroshima, H., & Masuda, T. (2002). Do tufted capuchin monkeys (Cebus apella) spontaneously deceive opponents? A preliminary analysis of an experimental food-competition contest between monkeys. Anim. Cogn., 5(1), 19–25.
Abstract: A new laboratory procedure which allows the study of deceptive behavior in nonhuman primates is described. Pairs of tufted capuchin monkeys faced each other in a food-competition contest. Two feeder boxes were placed between the monkeys. A piece of food was placed in one of the boxes. The subordinate individual was able to see the food and to open the box to obtain the bait. A dominant male was unable to see the food or to open the box but was able to take the food once the box was opened by the subordinate. In experiment 1, two of four subordinate monkeys spontaneously started to open the unbaited box first with increasing frequency. Experiment 2 confirmed that this “deceptive” act was not due to a drop in the rate of reinforcement caused by the usurping dominant male, under the situation in which food sometimes automatically dropped from the opened box. In experiment 3, two subordinate monkeys were rerun in the same situation as experiment 1. One of them showed some recovery of the “deceptive” act but the other did not; instead the latter tended to position himself on the side where there was no food before he started to open the box. Although the results do not clearly indicate spontaneous deception, we suggest that operationally defined spontaneous deceptive behaviors in monkeys can be analyzed with experimental procedures such as those used here.
|
|
|
Hirsch, B. T. (2007). Costs and benefits of within-group spatial position: a feeding competition model. Q Rev Biol, 82(1), 9–27.
Abstract: An animal's within-group spatial position has several important fitness consequences. Risk of predation, time spent engaging in antipredatory behavior and feeding competition can all vary with respect to spatial position. Previous research has found evidence that feeding rates are higher at the group edge in many species, but these studies have not represented the entire breadth of dietary diversity and ecological situations faced by many animals. In particular the presence of concentrated, defendable food patches can lead to increased feeding rates by dominants in the center of the group that are able to monopolize or defend these areas. To fully understand the tradeoffs of within-group spatial position in relation to a variety of factors, it is important to be able to predict where individuals should preferably position themselves in relation to feeding rates and food competition. A qualitative model is presented here to predict how food depletion time, abundance of food patches within a group, and the presence of prior knowledge of feeding sites affect the payoffs of different within-group spatial positions for dominant and subordinate animals. In general, when feeding on small abundant food items, individuals at the front edge of the group should have higher foraging success. When feeding on slowly depleted, rare food items, dominants will often have the highest feeding rates in the center of the group. Between these two extreme points of a continuum, an individual's optimal spatial position is predicted to be influenced by an additional combination of factors, such as group size, group spread, satiation rates, and the presence of producer-scrounger tactics.
|
|
|
Houpt, K. A., Parsons, M. S., & Hintz, H. F. (1982). Learning ability of orphan foals, of normal foals and of their mothers. J. Anim Sci., 55(5), 1027–1032.
Abstract: The maze learning ability of six pony foals that had been weaned at birth was compared to that of six foals reared normally. The foals' learning ability was also compared to their mothers' learning ability at the same task; the correct turn in a single choice point maze. The maze learning test was conducted when the foals were 6 to 8 mo old and after the mothered foals had been weaned. There was no significant difference between the ability of orphaned (weaned at birth) and mothered foals in their ability to learn to turn left (6 +/- .7 and 5.1 +/- .1 trials, respectively) or to learn the reversal, to turn right (6.7 +/- .6 and 6.2 +/- .6 trials, respectively). The orphan foals spent significantly more time in the maze in their first exposure to it than the mothered foals (184 +/- 42 vs 55 +/- 15 s. Mann Whitney U = 7, P less than .05). The mothers of the foals (n = 11) learned to turn left as rapidly as the foals (5.9 +/- .7 trials), but they were slower to learn to turn right (9.8 +/- 1.4 vs 6.4 +/- .4 trials, Mann Whitney U = 33, P less than .05), indicating that the younger horses learned more rapidly. There was no correlation between the trials to criteria of the mare and those of her foal, but there was a significant negative correlation between rank in trials to criteria and age (r = -65, P less than .05) when data from the mare and foal trials were combined. The dominance hierarchy of the mares was determined using a paired feeding test in which two horses competed for one bucket of feed. Although there was no correlation between rank in the hierarchy and maze learning ability, there was a correlation between body weight and rank in the hierarchy (r = .7, P less than .05). This may indicate either that heavier horses are likely to be dominant or that horses high in dominance gain more weight. Maternal deprivation did not appear to seriously retard learning of a simple maze by foals, although the orphans moved more slowly initially. The lack of maternal influence on learning is also reflected in the lack of correlation between the mare's learning ability and that of her foal. Young horses appear to learn more rapidly than older horses.
|
|