|
Anderson, J. R. (1995). Self-recognition in dolphins: credible cetaceans; compromised criteria, controls, and conclusions. Conscious Cogn, 4(2), 239–243.
|
|
|
Connor, R. C., Mann, J., Tyack, P. L., & Whitehead, H. (1998). Social evolution in toothed whales. Trends. Ecol. Evol, 13(6), 228–232.
Abstract: Two contrasting results emerge from comparisons of the social systems of several odontocetes with terrestrial mammals. Researchers have identified remarkable convergence in prominent features of the social systems of odontocetes such as the sperm whale and bottlenose dolphin with a few well-known terrestrial mammals such as the elephant and chimpanzee. In contrast, studies on killer whales and Baird's beaked whale reveal novel social solutions to aquatic living. The combination of convergent and novel features in odontocete social systems promise a more general understanding of the ecological determinants of social systems in both terrestrial and aquatic habitats, as well as the relationship between relative brain size and social evolution.
|
|
|
Connor, R. C., Wells, R. S., Mann, J., & Read, A. J. (2000). The bottlenose dolphin: Social relationships in a fission-fusion society. In J. Mann, R. C. Connor, P. L. Tyack, & H. Whitehead (Eds.), Cetacean Societies: Field Studies of Dolphins and Whales. (pp. 91–126). Chicago: University of Chicago Press.
Abstract: Book Description
“Part review, part testament to extraordinary dedication, and part call to get involved, Cetacean Societies highlights the achievements of behavioral ecologists inspired by the challenges of cetaceans and committed to the exploration of a new world.”-from the preface by Richard Wrangham
Long-lived, slow to reproduce, and often hidden beneath the water's surface, whales and dolphins (cetaceans) have remained elusive subjects for scientific study even though they have fascinated humans for centuries. Until recently, much of what we knew about cetaceans came from commercial sources such as whalers and trainers for dolphin acts. Innovative research methods and persistent efforts, however, have begun to penetrate the depths to reveal tantalizing glimpses of the lives of these mammals in their natural habitats.
Cetacean Societies presents the first comprehensive synthesis and review of these new studies. Groups of chapters focus on the history of cetacean behavioral research and methodology; state-of-the-art reviews of information on four of the most-studied species: bottlenose dolphins, killer whales, sperm whales, and humpback whales; and summaries of major topics, including group living, male and female reproductive strategies, communication, and conservation drawn from comparative research on a wide range of species.
Written by some of the world's leading cetacean scientists, this landmark volume will benefit not just students of cetology but also researchers in other areas of behavioral and conservation ecology as well as anyone with a serious interest in the world of whales and dolphins.
Contributors are Robin Baird, Phillip Clapham, Jenny Christal, Richard Connor, Janet Mann, Andrew Read, Randall Reeves, Amy Samuels, Peter Tyack, Linda Weilgart, Hal Whitehead, Randall S. Wells, and Richard Wrangham.
Keywords: cetacean social behavior, male alliance formation, most cetacean species, platanistid river dolphins, cetacean sociality, strategies and social bonds, female cetaceans, many cetologists, most mysticetes, sperm whale calves, passive fishing nets, variant whistles, historical whaling records, cetacean systematics, stable matrilineal groups, peak calving season, suction cup tags, mutualistic groups, cetacean vocalizations, focal animal studies, larger odontocetes, predictive signaling, individual cetaceans, sperm whale clicks, resident killer whales
|
|
|
Fripp, D., Owen, C., Quintana-Rizzo, E., Shapiro, A., Buckstaff, K., Jankowski, K., et al. (2005). Bottlenose dolphin (Tursiops truncatus) calves appear to model their signature whistles on the signature whistles of community members. Anim. Cogn., 8(1), 17–26.
Abstract: Bottlenose dolphins are unusual among non-human mammals in their ability to learn new sounds. This study investigates the importance of vocal learning in the development of dolphin signature whistles and the influence of social interactions on that process. We used focal animal behavioral follows to observe six calves in Sarasota Bay, Fla., recording their social associations during their first summer, and their signature whistles during their second. The signature whistles of five calves were determined. Using dynamic time warping (DTW) of frequency contours, the calves' signature whistles were compared to the signature whistles of several sets of dolphins: their own associates, the other calves' associates, Tampa Bay dolphins, and captive dolphins. Whistles were considered similar if their DTW similarity score was greater than those of 95% of the whistle comparisons. Association was defined primarily in terms of time within 50 m of the mother/calf pair. On average, there were six dolphins with signature whistles similar to the signature whistles of each of the calves. These were significantly more likely to be Sarasota Bay resident dolphins than non-Sarasota dolphins, and (though not significantly) more likely to be dolphins that were within 50 m of the mother and calf less than 5% of the time. These results suggest that calves may model their signature whistles on the signature whistles of members of their community, possibly community members with whom they associate only rarely.
|
|
|
Hart, D., & Whitlow, J. W. J. (1995). The experience of self in the bottlenose dolphin. Conscious Cogn, 4(2), 244–247.
Abstract: Marten and Psarakos have presented some evidence which suggests that objective self-awareness and possibly representations of self may characterize the dolphins' experience of self. Their research demonstrates the possibility of similarities in the sense of self between primate species and dolphins, although whether dolphins have subjective self-awareness, personal memories, and theories of self--all important facets of the sense of self in humans--was not examined. Clearly, even this limited evidence was difficult to achieve; the difficulties in adapting methods and coding behavior are quite apparent in their report. Future progress, however, may depend upon clarification of what are the necessary components for a sense of self and an explication of how these might be reflected in dolphin behavior. We are mindful of the authors' point (pp. 219 and 220) that the dolphin lives more in an acoustic than a visual environment. Thus, while tasks relying upon vision may reveal the presence or absence of the sense of self in primates, it might well be the case that in dolphins self-related experiences might be better revealed in auditory tasks. But then, what is the nature of human self-awareness in terms of audition? While both conceptual and methodological hurdles remain, Marten and Psarakos have demonstrated that important questions can be asked about the minds and phenomenal worlds of nonanthropoid species.
|
|
|
Janik, V. M. (2000). Whistle matching in wild bottlenose dolphins (Tursiops truncatus). Science, 289(5483), 1355–1357.
Abstract: Dolphin communication is suspected to be complex, on the basis of their call repertoires, cognitive abilities, and ability to modify signals through vocal learning. Because of the difficulties involved in observing and recording individual cetaceans, very little is known about how they use their calls. This report shows that wild, unrestrained bottlenose dolphins use their learned whistles in matching interactions, in which an individual responds to a whistle of a conspecific by emitting the same whistle type. Vocal matching occurred over distances of up to 580 meters and is indicative of animals addressing each other individually.
|
|
|
Loveland, K. A. (1995). Self-recognition in the bottlenose dolphin: ecological considerations. Conscious Cogn, 4(2), 254–257.
|
|
|
Marten, K., & Psarakos, S. (1995). Using self-view television to distinguish between self-examination and social behavior in the bottlenose dolphin (Tursiops truncatus). Conscious Cogn, 4(2), 205–224.
Abstract: In mirror mark tests dolphins twist, posture, and engage in open-mouth and head movements, often repetitive. Because postures and an open mouth are also dolphin social behaviors, we used self-view television as a manipulatable mirror to distinguish between self-examination and social behavior. Two dolphins were exposed to alternating real-time self-view (“mirror mode”) and playback of the same to determine if they distinguished between them. The adult male engaged in elaborate open-mouth behaviors in mirror mode, but usually just watched when played back the same material. Mirror mode behavior was also compared to interacting with real dolphins (controls). Mark tests were conducted, as well as switches from front to side self-views to see if the dolphins turned. They presented marked areas to the self-view television and turned. The results suggest self-examination over social behavior.
|
|
|
Reiss, D., & Marino, L. (2001). Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence. Proc. Natl. Acad. Sci. U.S.A., 98(10), 5937–5942.
Abstract: The ability to recognize oneself in a mirror is an exceedingly rare capacity in the animal kingdom. To date, only humans and great apes have shown convincing evidence of mirror self-recognition. Two dolphins were exposed to reflective surfaces, and both demonstrated responses consistent with the use of the mirror to investigate marked parts of the body. This ability to use a mirror to inspect parts of the body is a striking example of evolutionary convergence with great apes and humans.
|
|
|
Xitco, M. J. J., Gory, J. D., & Kuczaj, S. A. 2nd. (2004). Dolphin pointing is linked to the attentional behavior of a receiver. Anim. Cogn., 7(4), 231–238.
Abstract: In 2001, Xitco et al. (Anim Cogn 4:115-123) described spontaneous behaviors in two bottlenose dolphins (Tursiops truncatus) that resembled pointing and gaze alternation. The dolphins' spontaneous behavior was influenced by the presence of a potential receiver, and the distance between the dolphin and the receiver. The present study adapted the technique of Call and Tomasello [(1994) J Comp Psychol 108:307-317], used with orangutans to test the effect of the receiver's orientation on pointing in these same dolphins. The dolphins directed more points and monitoring behavior at receivers whose orientation was consistent with attending to the dolphins. The results demonstrated that the dolphins' pointing and monitoring behavior, like that of apes and infants, was linked to the attentional behavior of the receiver.
|
|