|
Adachi, I., Kuwahata, H., & Fujita, K. (2007). Dogs recall their owner's face upon hearing the owner's voice. Anim. Cogn., 10(1), 17–21.
Abstract: Abstract We tested whether dogs have a cross-modal representation of human individuals. We presented domestic dogs with a photo of either the owner's or a stranger's face on the LCD monitor after playing back a voice of one of those persons. A voice and a face matched in half of the trials (Congruent condition) and mismatched in the other half (Incongruent condition). If our subjects activate visual images of the voice, their expectation would be contradicted in Incongruent condition. It would result in the subjects` longer looking times in Incongruent condition than in Congruent condition. Our subject dogs looked longer at the visual stimulus in Incongruent condition than in Congruent condition. This suggests that dogs actively generate their internal representation of the owner's face when they hear the owner calling them. This is the first demonstration that nonhuman animals do not merely associate auditory and visual stimuli but also actively generate a visual image from auditory information. Furthermore, our subject also looked at the visual stimulus longer in Incongruent condition in which the owner's face followed an unfamiliar person's voice than in Congruent condition in which the owner's face followed the owner's voice. Generating a particular visual image in response to an unfamiliar voice should be difficult, and any expected images from the voice ought to be more obscure or less well defined than that of the owners. However, our subjects looked longer at the owner's face in Incongruent condition than in Congruent condition. This may indicate that dogs may have predicted that it should not be the owner when they heard the unfamiliar person's voice.
|
|
|
Adler, L. L., & Adler, H. E. (1977). Ontogeny of observational learning in the dog (Canis familiaris). Dev Psychobiol, 10(3), 267–271.
Abstract: A split-litter technique was used to test observational learning in 4 litters of Miniature Dachshund puppies, 21, 28, 38, and 60 days old at the beginning of the experiment. In one side of a duplicate cage, one puppy of a litter, the demonstrator, learned to pull in a food cart on a runner by means of a ribbon, while another puppy, the observer, watched from an adjacent compartment, separated by a wire screen. Observational learning was demonstrated by the saving in time for the 1st trial when the observer was given the same problem to solve. Maturation, particularly the development of visual function and motor coordination, set a lower age limit for the emergence of observational learning.
|
|
|
Arluke, A. (2004). The use of dogs in medical and veterinary training: understanding and approaching student uneasiness. J Appl Anim Welf Sci, 7(3), 197–204.
|
|
|
Ayres, C. M., Davey, L. M., & German, W. J. (1963). Cerebral Hydatidosis. Clinical Case Report With A Review Of Pathogenesis. J Neurosurg, 20, 371–377.
|
|
|
B. Agnetta,, B. Hare,, & M. Tomasello,. (2000). Cues to food location that domestic dogs (Canis familiaris) of different ages do and do not use. Anim. Cogn., 3(2), 107–112.
Abstract: Autoren
B. Agnetta, B. Hare, M. Tomasello
Zusammenfassung
The results of three experiments are reported. In the main study, a human experimenter presented domestic dogs (Canis familiaris) with a variety of social cues intended to indicate the location of hidden food. The novel findings of this study were: (1) dogs were able to use successfully several totally novel cues in which they watched a human place a marker in front of the target location; (2) dogs were unable to use the marker by itself with no behavioral cues (suggesting that some form of human behavior directed to the target location was a necessary part of the cue); and (3) there were no significant developments in dogs' skills in these tasks across the age range 4 months to 4 years (arguing against the necessity of extensive learning experiences with humans). In a follow-up study, dogs did not follow human gaze into “empty space” outside of the simulated foraging context. Finally, in a small pilot study, two arctic wolves (Canis lupus) were unable to use human cues to locate hidden food. These results suggest the possibility that domestic dogs have evolved an adaptive specialization for using human-produced directional cues in a goal-directed (especially foraging) context. Exactly how they understand these cues is still an open question.
Schlüsselwörter
Key words Dogs – Arctic wolves – Social cognition – Gaze following – Communication
|
|
|
Batt, L. S., Batt, M. S., Baguley, J. A., & McGreevy, P. D. (2009). The relationships between motor lateralization, salivary cortisol concentrations and behavior in dogs. Journal of Veterinary Behaviour, 4(6), 216–222.
Abstract: The degree of lateralization (LI) indicates both the direction and strength of a paw preference. Here, a positive value is indicative of a right paw bias, and a negative value of a left paw bias. Higher numbers on the positive side of the scale and lower numbers on the negative side of the scale indicate a greater strength of that lateralization. The strength of motor lateralization (|LI|) is the absolute value of the LI. The use of absolute value removes directionality (i.e., does not indicate left or right paw bias) and instead indicates only the strength of the paw preference. Both LI and |LI| have been associated with behavioral differences in a range of species. The assessment of motor lateralization in the dog can be conducted by observing the paw used to perform motor tasks. Elevated cortisol concentrations have been associated with fearfulness in many species. Additionally, fearfulness and boldness can be assessed in response to so-called temperament tests. Consequently, in this study we examine the relationship between lateralization, temperament test results, and cortisol concentrations in 43 potential guide dogs, of which 38 were Labrador retrievers and 5 were golden retrievers. Over a 14-month period, the current study assessed motor lateralization and salivary cortisol concentrations 3 times (approximately 6 months of age, 14 months of age, and after the dogs' performance in the guide dog program had been determined) and behavior twice (approximately 6 and 14 months of age). This study is the first to examine the relationship between behavior, lateralization, and cortisol concentrations in dogs. It implemented an objective and quantifiable assessment of behavior that may be of use to a variety of dog-focused stakeholders. Findings show that during the Juvenile testing period (6 months of age), dogs with higher cortisol concentrations were typically less able to rest when exposed to the unfamiliar testing room. Results from both Juvenile and Adult Test (14 months of age) periods showed that a greater |LI| and LI were associated with more confident and relaxed behavior when dogs were exposed to novel stimuli and unfamiliar environments. Significant elevations of cortisol concentrations were found at the completion of guide dog training when compared with results from the 2 prior test periods. This finding may reflect maturation or the effect of the prolonged kenneling which occurred during this period.
|
|
|
Beaver, B. V. (1981). Problems & values associated with dominance. Vet Med Small Anim Clin, 76(8), 1129–1131.
|
|
|
Bloom, P. (2004). Behavior. Can a dog learn a word? Science, 304(5677), 1605–1606.
|
|
|
Bonanni, R., Cafazzo, S., Valsecchi, P., & Natoli, E. (2010). Effect of affiliative and agonistic relationships on leadership behaviour in free-ranging dogs. Anim. Behav., 79(5), 981–991.
Abstract: Consensus decisions about the nature and timing of group activities allow animals to maintain group cohesiveness, but also entail costs because individuals often differ with respect to their optimal activity budgets. Two mechanisms whereby animals reach a consensus include ‘consistent leadership’, in which a single dominant individual makes the decision, and ‘variable leadership’ in which several group members contribute to the decision outcome. Sharing of consensus decisions is expected to reduce consensus costs to most group members. Both patterns are thought to emerge from the complexity of social relationships of group members. We investigated the distribution of leadership during group departures in two packs of free-ranging dogs, Canis lupus familiaris, and tested how its distribution between individuals was affected by dominance rank-related affiliative and agonistic relationships. Although leadership was not entirely concentrated on a single group member, both packs had a limited number of habitual leaders. In the largest pack, the pattern of leadership changed from ‘variable’ to nearly ‘consistent’ after its size had shrunk. Habitual leaders were usually old and high-ranking individuals. However, high-ranking dogs that received affiliative submissions in greeting ceremonies were more likely to lead than dominant dogs receiving submissions only in agonistic contexts. During resting times, habitual followers associated more closely with habitual leaders than with other followers. These results suggest that in social species collective movements may arise from the effort of subordinates to maintain close proximity with specific valuable social partners.
|
|
|
Branson, N. J., & Rogers, L. J. (2006). Relationship between paw preference strength and noise phobia in Canis familiaris. J. Comp. Psychol., 120(3), 176–183.
Abstract: The authors investigated the relationship between degree of lateralization and noise phobia in 48 domestic dogs (Canis familiaris) by scoring paw preference to hold a food object and relating it to reactivity to the sounds of thunderstorms and fireworks, measured by playback and a questionnaire. The dogs without a significant paw preference were significantly more reactive to the sounds than the dogs with either a left-paw or right-paw preference. Intense reactivity, therefore, is associated with a weaker strength of cerebral lateralization. The authors note the similarity between their finding and the weaker hand preferences shown in humans suffering extreme levels of anxiety and suggest neural mechanisms that may be involved. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
|
|