|
Bourdin, P., & Laurent, A. (1974). [Ecology of African horsesickness]. Rev Elev Med Vet Pays Trop, 27(2), 163–168.
|
|
|
Dauphin, G., Zientara, S., Zeller, H., & Murgue, B. (2004). West Nile: worldwide current situation in animals and humans. Comp Immunol Microbiol Infect Dis, 27(5), 343–355.
Abstract: West Nile (WN) virus is a mosquito-borne flavivirus that is native to Africa, Europe, and Western Asia. It mainly circulates among birds, but can infect many species of mammals, as well as amphibians and reptiles. Epidemics can occur in rural as well as urban areas. Transmission of WN virus, sometimes involving significant mortality in humans and horses, has been documented at erratic intervals in many countries, but never in the New World until it appeared in New York City in 1999. During the next four summers it spread with incredible speed to large portions of 46 US states, and to Canada, Mexico, Central America and the Caribbean. In many respects, WN virus is an outstanding example of a zoonotic pathogen that has leaped geographical barriers and can cause severe disease in human and equine. In Europe, in the past two decades there have been a number of significant outbreaks in several countries. However, very little is known of the ecology and natural history of WN virus transmission in Europe and most WN outbreaks in humans and animals remain unpredictable and difficult to control.
|
|
|
Hanson, R. P., & Trainer, D. O. (1969). Significance of changing ecology on the epidemiology of arboviruses in the United States. Proc Annu Meet U S Anim Health Assoc, 73, 291–294.
|
|
|
Komar, N. (2003). West Nile virus: epidemiology and ecology in North America. Adv Virus Res, 61, 185–234.
|
|
|
Manning, G. S., & Ratanarat, C. (1970). Fasciolopsis buski (Lankester, 1857) in Thailand. Am J Trop Med Hyg, 19(4), 613–619.
|
|
|
Munoz-Sanz, A. (2006). [Christopher Columbus flu. A hypothesis for an ecological catastrophe]. Enferm Infecc Microbiol Clin, 24(5), 326–334.
Abstract: When Christopher Columbus and his men embarked on the second Colombian expedition to the New World (1493), the crew suffered from fever, respiratory symptoms and malaise. It is generally accepted that the disease was influenza. Pigs, horses and hens acquired in Gomera (Canary Islands) traveled in the same ship. The pigs may well have been the origin of the flu and the intermediary hosts for genetic recombination of other viral subtypes. The Caribbean archipelago had a large population of birds, the natural reservoir of the avian influenza virus. In this ecological scenario there was a concurrence of several biological elements that had never before coexisted in the New World: pigs, horses, the influenza virus and humans. We propose that birds are likely to have played an important role in the epidemiology of the flu occurring on the second Colombian trip, which caused a fatal demographic catastrophe, with an estimated mortality of 90% among the natives.
|
|
|
No authors listed. (1995). Workshop on the geographic spread of Aedes albopictus in Europe and the concern among public health authorities. Proceedings of a workshop held at the Istituto Superiore di Sanita, Rome, Italy, 19-20 December 1994. In Parassitologia (Vol. 37, pp. 87–90).
|
|
|
Scherer, W. F., & Dickerman, R. W. (1972). Ecologic studies of Venezuelan encephalitis virus in southeastern Mexico. 8. Correlations and conclusions. Am J Trop Med Hyg, 21(2), 86–89.
|
|
|
Scherer, W. F., Dickerman, R. W., & Ordonez, J. V. (1970). Discovery and geographic distribution of Venezuelan encephalitis virus in Guatemala, Honduras, and British Honduras during 1965-68, and its possible movement to Central America and Mexico. Am J Trop Med Hyg, 19(4), 703–711.
|
|
|
Stout, I. J., Clifford, C. M., Keirans, J. E., & Portman, R. W. (1971). Dermacentor variabilis (Say) (Acarina: Ixodidae) established in southeastern Washington and northern Idaho. J Med Entomol, 8(2), 143–147.
|
|