|
Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282(5389), 746–749.
Abstract: A fundamental question in cognitive science is whether animals can represent numerosity (a property of a stimulus that is defined by the number of discriminable elements it contains) and use numerical representations computationally. Here, it was shown that rhesus monkeys represent the numerosity of visual stimuli and detect their ordinal disparity. Two monkeys were first trained to respond to exemplars of the numerosities 1 to 4 in an ascending numerical order (1 --> 2 --> 3 --> 4). As a control for non-numerical cues, exemplars were varied with respect to size, shape, and color. The monkeys were later tested, without reward, on their ability to order stimulus pairs composed of the novel numerosities 5 to 9. Both monkeys responded in an ascending order to the novel numerosities. These results show that rhesus monkeys represent the numerosities 1 to 9 on an ordinal scale.
|
|
|
Brannon, E. M., Cantlon, J. F., & Terrace, H. S. (2006). The role of reference points in ordinal numerical comparisons by rhesus macaques (Macaca mulatta). J Exp Psychol Anim Behav Process, 32(2), 120–134.
Abstract: Two experiments examined ordinal numerical knowledge in rhesus macaques (Macaca mulatta). Experiment 1 replicated the finding (E. M. Brannon & H. S. Terrace, 2000) that monkeys trained to respond in descending numerical order (4-->3-->2-->1) did not generalize the descending rule to the novel values 5-9 in contrast to monkeys trained to respond in ascending order. Experiment 2 examined whether the failure to generalize a descending rule was due to the direction of the training sequence or to the specific values used in the training sequence. Results implicated 3 factors that characterize a monkey's numerical comparison process: Weber's law, knowledge of ordinal direction, and a comparison of each value in a test pair with the reference point established by the first value of the training sequence.
|
|
|
de Waal, F. B. M., Dindo, M., Freeman, C. A., & Hall, M. J. (2005). The monkey in the mirror: hardly a stranger. Proc. Natl. Acad. Sci. U.S.A., 102(32), 11140–11147.
Abstract: It is widely assumed that monkeys see a stranger in the mirror, whereas apes and humans recognize themselves. In this study, we question the former assumption by using a detailed comparison of how monkeys respond to mirrors versus live individuals. Eight adult female and six adult male brown capuchin monkeys (Cebus apella) were exposed twice to three conditions: (i) a familiar same-sex partner, (ii) an unfamiliar same-sex partner, and (iii) a mirror. Females showed more eye contact and friendly behavior and fewer signs of anxiety in front of a mirror than they did when exposed to an unfamiliar partner. Males showed greater ambiguity, but they too reacted differently to mirrors and strangers. Discrimination between conditions was immediate, and blind coders were able to tell the difference between monkeys under the three conditions. Capuchins thus seem to recognize their reflection in the mirror as special, and they may not confuse it with an actual conspecific. Possibly, they reach a level of self-other distinction intermediate between seeing their mirror image as other and recognizing it as self.
|
|
|
DiGian, K. A., Friedrich, A. M., & Zentall, T. R. (2004). Discriminative stimuli that follow a delay have added value for pigeons. Psychon Bull Rev, 11(5), 889–895.
Abstract: Clement, Feltus, Kaiser, and Zentall (2000) reported that pigeons prefer discriminative stimuli that require greater effort (more pecks) to obtain over those that require less effort. In the present experiment, we examined two variables associated with this phenomenon. First, we asked whether delay of reinforcement, presumably a relatively aversive event similar to effort, would produce similar effects. Second, we asked whether the stimulus preference produced by a prior relatively aversive event depends on its anticipation. Anticipation of delay was accomplished by signaling its occurrence. Results indicated that delays can produce preferences similar to those produced by increased effort, but only if the delays are signaled.
|
|
|
Dusek, J. A., & Eichenbaum, H. (1997). The hippocampus and memory for orderly stimulus relations. Proc. Natl. Acad. Sci. U.S.A., 94(13), 7109–7114.
Abstract: Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans.
|
|
|
Fagot, J., Wasserman, E. A., & Young, M. E. (2001). Discriminating the relation between relations: the role of entropy in abstract conceptualization by baboons (Papio papio) and humans (Homo sapiens). J Exp Psychol Anim Behav Process, 27(4), 316–328.
Abstract: Two baboons (Papio papio) successfully learned relational matching-to-sample: They picked the choice display that involved the same relation among 16 pictures (same or different) as the sample display, although the sample display shared no pictures with the choice displays. The baboons generalized relational matching behavior to sample displays created from novel pictures. Further experiments varying the number of sample pictures and the mixture of same and different sample pictures suggested that entropy plays a key role in the baboons' conceptual behavior. Two humans (Homo sapiens) were similarly trained and tested; their behavior was both similar to and different from the baboons' behavior. The results suggest that animals other than humans and chimpanzees can discriminate the relation between relations. They further suggest that entropy detection may underlie same-different conceptualization, but that additional processes may participate in human conceptualization.
|
|
|
Hall, C. A., Cassaday, H. J., Vincent, C. J., & Derrington, A. M. (2006). Cone excitation ratios correlate with color discrimination performance in the horse (Equus caballus). J Comp Psychol, 120(4), 438–448.
Abstract: Six horses (Equus caballus) were trained to discriminate color from grays in a counterbalanced sequence in which lightness cues were irrelevant. Subsequently, the pretrained colors were presented in a different sequence. Two sets of novel colors paired with novel grays were also tested. Performance was just as good in these transfer tests. Once the horse had learned to select the chromatic from the achromatic stimulus, regardless of the specific color, they were immediately able to apply this rule to novel stimuli. In terms of the underlying visual mechanisms, the present study showed for the first time that the spectral sensitivity of horse cone photopigments, measured as cone excitation ratios, was correlated with color discrimination performance, measured as accuracy, repeated errors, and latency of approach.
|
|
|
Hauser, M. D., Kralik, J., Botto-Mahan, C., Garrett, M., & Oser, J. (1995). Self-recognition in primates: phylogeny and the salience of species-typical features. Proc. Natl. Acad. Sci. U.S.A., 92(23), 10811–10814.
Abstract: Self-recognition has been explored in nonlinguistic organisms by recording whether individuals touch a dye-marked area on visually inaccessible parts of their face while looking in a mirror or inspect parts of their body while using the mirror's reflection. Only chimpanzees, gorillas, orangutans, and humans over the age of approximately 2 years consistently evidence self-directed mirror-guided behavior without experimenter training. To evaluate the inferred phylogenetic gap between hominoids and other animals, a modified dye-mark test was conducted with cotton-top tamarins (Saguinus oedipus), a New World monkey species. The white hair on the tamarins' head was color-dyed, thereby significantly altering a visually distinctive species-typical feature. Only individuals with dyed hair and prior mirror exposure touched their head while looking in the mirror. They looked longer in the mirror than controls, and some individuals used the mirror to observe visually inaccessible body parts. Prior failures to pass the mirror test may have been due to methodological problems, rather than to phylogenetic differences in the capacity for self-recognition. Specifically, an individual's sensitivity to experimentally modified parts of its body may depend crucially on the relative saliency of the modified part (e.g., face versus hair). Moreover, and in contrast to previous claims, we suggest that the mirror test may not be sufficient for assessing the concept of self or mental state attribution in nonlinguistic organisms.
|
|
|
Heschl, A., & Burkart, J. (2006). A new mark test for mirror self-recognition in non-human primates. Primates, 47(3), 187–198.
Abstract: For 30 years Gallup's (Science 167:86-87, 1970) mark test, which consists of confronting a mirror-experienced test animal with its own previously altered mirror image, usually a color mark on forehead, eyebrow or ear, has delivered valuable results about the distribution of visual self-recognition in non-human primates. Chimpanzees, bonobos, orangutans and, less frequently, gorillas can learn to correctly understand the reflection of their body in a mirror. However, the standard version of the mark test is good only for positively proving the existence of self-recognition. Conclusive statements about the lack of self-recognition are more difficult because of the methodological constraints of the test. This situation has led to a persistent controversy about the power of Gallup's original technique. We devised a new variant of the test which permits more unequivocal decisions about both the presence and absence of self-recognition. This new procedure was tested with marmoset monkeys (Callithrix jacchus), following extensive training with mirror-related tasks to facilitate performance in the standard mark test. The results show that a slightly altered mark test with a new marking substance (chocolate cream) can help to reliably discriminate between true negative results, indicating a real lack of ability to recognize oneself in a mirror, from false negative results that are due to methodological particularities of the standard test. Finally, an evolutionary hypothesis is put forward as to why many primates can use a mirror instrumentally – i.e. know how to use it for grasping at hidden objects – while failing in the decisive mark test.
|
|
|
Jordan, K. E., & Brannon, E. M. (2006). Weber's Law influences numerical representations in rhesus macaques (Macaca mulatta). Anim. Cogn., 9(3), 159–172.
Abstract: We present the results of two experiments that probe the ability of rhesus macaques to match visual arrays based on number. Three monkeys were first trained on a delayed match-to-sample paradigm (DMTS) to match stimuli on the basis of number and ignore continuous dimensions such as element size, cumulative surface area, and density. Monkeys were then tested in a numerical bisection experiment that required them to indicate whether a sample numerosity was closer to a small or large anchor value. Results indicated that, for two sets of anchor values with the same ratio, the probability of choosing the larger anchor value systematically increased with the sample number and the psychometric functions superimposed. A second experiment employed a numerical DMTS task in which the choice values contained an exact numerical match to the sample and a distracter that varied in number. Both accuracy and reaction time were modulated by the ratio between the correct numerical match and the distracter, as predicted by Weber's Law.
|
|