|
Dusek, J. A., & Eichenbaum, H. (1997). The hippocampus and memory for orderly stimulus relations. Proc. Natl. Acad. Sci. U.S.A., 94(13), 7109–7114.
Abstract: Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans.
|
|
|
Heschl, A., & Burkart, J. (2006). A new mark test for mirror self-recognition in non-human primates. Primates, 47(3), 187–198.
Abstract: For 30 years Gallup's (Science 167:86-87, 1970) mark test, which consists of confronting a mirror-experienced test animal with its own previously altered mirror image, usually a color mark on forehead, eyebrow or ear, has delivered valuable results about the distribution of visual self-recognition in non-human primates. Chimpanzees, bonobos, orangutans and, less frequently, gorillas can learn to correctly understand the reflection of their body in a mirror. However, the standard version of the mark test is good only for positively proving the existence of self-recognition. Conclusive statements about the lack of self-recognition are more difficult because of the methodological constraints of the test. This situation has led to a persistent controversy about the power of Gallup's original technique. We devised a new variant of the test which permits more unequivocal decisions about both the presence and absence of self-recognition. This new procedure was tested with marmoset monkeys (Callithrix jacchus), following extensive training with mirror-related tasks to facilitate performance in the standard mark test. The results show that a slightly altered mark test with a new marking substance (chocolate cream) can help to reliably discriminate between true negative results, indicating a real lack of ability to recognize oneself in a mirror, from false negative results that are due to methodological particularities of the standard test. Finally, an evolutionary hypothesis is put forward as to why many primates can use a mirror instrumentally – i.e. know how to use it for grasping at hidden objects – while failing in the decisive mark test.
|
|
|
Rizzolatti, G., Fogassi, L., & Gallese, V. (2006). Mirrors of the mind. Sci Am, 295(5), 54–61.
|
|
|
Stahlbaum, C. C., & Houpt, K. A. (1989). The role of the Flehmen response in the behavioral repertoire of the stallion. Physiol. Behav., 45(6), 1207–1214.
Abstract: The role of the Flehmen response in equine behavior was investigated under field and laboratory conditions. In Experiment 1, a field study made of five stallions on pasture with between three and eighteen mares each during the season indicated the following: 1) The Flehmen response was most frequently preceded by nasal, rather than oral, investigation of substances; 2) The stallions' rate of Flehmen varied with the estrous cycles of the mares; 3) The rate of Flehmen response did not show a variation with time of day; and 4) The Flehmen response was most frequently followed by marking behaviors rather than courtship behaviors. The results suggest that the Flehmen response is not an immediate component of sexual behavior, e.g., courtship of the stallion but may be involved in the overall monitoring of the mare's estrous cycle. Therefore the Flehmen response may contribute to the chemosensory priming of the stallion for reproduction. In Experiment 2 stallions were presented with urine or feces of mares in various stages of the reproductive cycle as well as with their own or other males' urine or feces. The occurrence of sniffing and Flehmen was used to determine the discriminatory ability of the stallions. Stallions can differentiate the sex of a horse on the basis of its feces alone, but cannot differentiate on the basis of urine. This ability may explain the function of fecal marking behavior of stallions.
|
|