|
Agrillo, C., Dadda, M., & Bisazza, A. (2007). Quantity discrimination in female mosquitofish. Anim. Cogn., 10(1), 63–70.
Abstract: The ability in animals to count and represent different numbers of objects has received a great deal of attention in the past few decades. Cumulative evidence from comparative studies on number discriminations report obvious analogies among human babies, non-human primates and birds and are consistent with the hypothesis of two distinct and widespread mechanisms, one for counting small numbers (<4) precisely, and one for quantifying large numbers approximately. We investigated the ability to discriminate among different numerosities, in a distantly related species, the mosquitofish, by using the spontaneous choice of a gravid female to join large groups of females as protection from a sexually harassing male. In one experiment, we found that females were able to discriminate between two shoals with a 1:2 numerosity ratio (2 vs. 4, 4 vs. 8 and 8 vs. 16 fish) but failed to discriminate a 2:3 ratio (8 vs. 12 fish). In the second experiment, we studied the ability to discriminate between shoals that differed by one element; females were able to select the larger shoal when the paired numbers were 2 vs. 3 or 3 vs. 4 but not 4 vs. 5 or 5 vs. 6. Our study indicates that numerical abilities in fish are comparable with those of other non-verbal creatures studied; results are in agreement with the hypothesis of the existence of two distinct systems for quantity discrimination in vertebrates.
|
|
|
Akins, C. K., Klein, E. D., & Zentall, T. R. (2002). Imitative learning in Japanese quail (Coturnix japonica) using the bidirectional control procedure. Anim Learn Behav, 30(3), 275–281.
Abstract: In the bidirectional control procedure, observers are exposed to a conspecific demonstrator responding to a manipulandum in one of two directions (e.g., left vs. right). This procedure controls for socially mediated effects (the mere presence of a conspecific) and stimulus enhancement (attention drawn to a manipulandum by its movement), and it has the added advantage of being symmetrical (the two different responses are similar in topography). Imitative learning is demonstrated when the observers make the response in the direction that they observed it being made. Recently, however, it has been suggested that when such evidence is found with a predominantly olfactory animal, such as the rat, it may result artifactually from odor cues left on one side of the manipulandum by the demonstrator. In the present experiment, we found that Japanese quail, for which odor cues are not likely to play a role, also showed significant correspondence between the direction in which the demonstrator and the observer push a screen to gain access to reward. Furthermore, control quail that observed the screen move, when the movement of the screen was not produced by the demonstrator, did not show similar correspondence between the direction of screen movement observed and that performed by the observer. Thus, with the appropriate control, the bidirectional procedure appears to be useful for studying imitation in avian species.
|
|
|
Anderson, J. R. (1995). Self-recognition in dolphins: credible cetaceans; compromised criteria, controls, and conclusions. Conscious Cogn, 4(2), 239–243.
|
|
|
Aust, U., & Huber, L. (2006). Picture-object recognition in pigeons: evidence of representational insight in a visual categorization task using a complementary information procedure. J Exp Psychol Anim Behav Process, 32(2), 190–195.
Abstract: Success in tasks requiring categorization of pictorial stimuli does not prove that a subject understands what the pictures stand for. The ability to achieve representational insight is by no means a trivial one because it exceeds mere detection of 2-D features present in both the pictorial images and their referents. So far, evidence for such an ability in nonhuman species is weak and inconclusive. Here, the authors report evidence of representational insight in pigeons. After being trained on pictures of incomplete human figures, the birds responded significantly more to pictures of the previously missing parts than to nonrepresentative stimuli, which demonstrates that they actually recognized the pictures' representational content.
|
|
|
Benard, J., Stach, S., & Giurfa, M. (2006). Categorization of visual stimuli in the honeybee Apis mellifera. Anim. Cogn., 9(4), 257–270.
Abstract: Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.
|
|
|
Biederman, G. B., Robertson, H. A., & Vanayan, M. (1986). Observational learning of two visual discriminations by pigeons: a within-subjects design. J Exp Anal Behav, 46(1), 45–49.
Abstract: Pigeon's observational learning of successive visual discrimination was studied using within-subject comparisons of data from three experimental conditions. Two pairs of discriminative stimuli were used; each bird was exposed to two of the three experimental conditions, with different pairs of stimuli used in a given bird's two conditions. In one condition, observers were exposed to visual discriminative stimuli only. In a second condition, subjects were exposed to a randomly alternating sequence of two stimuli where the one that would subsequently be used as S+ was paired with the operation of the grain magazine. In a third experimental condition, subjects were exposed to the performance of a conspecific in the operant discrimination procedure. After exposures to conspecific performances, there was facilitation of discriminative learning, relative to that which followed exposures to stimulus and reinforcement sequences or exposures to stimulus sequences alone. Exposure to stimulus and food-delivery sequences enhanced performance relative to exposure to stimulus sequences alone. The differential effects of these three types of exposure were not attributable to order effects or to task difficulty; rather, they clearly were due to the type of exposure.
|
|
|
Blackmore, T. L., Foster, T. M., Sumpter, C. E., & Temple, W. (2008). An investigation of colour discrimination with horses (Equus caballus). Behav. Process., 78(3), 387–396.
Abstract: The ability of four horses (Equus caballus) to discriminate coloured (three shades of blue, green, red, and yellow) from grey (neutral density) stimuli, produced by back projected lighting filters, was investigated in a two response forced-choice procedure. Pushes of the lever in front of a coloured screen were occasionally reinforced, pushes of the lever in front of a grey screen were never reinforced. Each colour shade was randomly paired with a grey that was brighter, one that was dimmer, and one that approximately matched the colour in terms of brightness. Each horse experienced the colours in a different order, a new colour was started after 85% correct responses over five consecutive sessions or if accuracy showed no trend over sessions. All horses reached the 85% correct with blue versus grey, three horses did so with both yellow and green versus grey. All were above chance with red versus grey but none reached criterion. Further analysis showed the wavelengths of the green stimuli used overlapped with the yellow. The results are consistent with histological and behavioural studies that suggest that horses are dichromatic. They differ from some earlier data in that they indicate horses can discriminate yellow and blue, but that they may have deficiencies in discriminating red and green.
|
|
|
Bovet, D., Vauclair, J., & Blaye, A. (2005). Categorization and abstraction abilities in 3-year-old children: a comparison with monkey data. Anim. Cogn., 8(1), 53–59.
Abstract: Three-year-old children were tested on three categorization tasks of increasing levels of abstraction (used with adult baboons in an earlier study): the first was a conceptual categorization task (food vs toys), the second a perceptual matching task (same vs different objects), and the third a relational matching task in which the children had to sort pairs according to whether or not the two items belonged to the same or different categories. The children were tested using two different procedures, the first a replication of the procedure used with the baboons (pulling one rope for a category or a relationship between two objects, and another rope for the other category or relationship), the second a task based upon children's prior experiences with sorting objects (putting in the same box objects belonging to the same category or a pair of objects exemplifying the same relation). The children were able to solve the first task (conceptual categorization) when tested with the sorting into boxes procedure, and the second task (perceptual matching) when tested with both procedures. The children were able to master the third task (relational matching) only when the rules were clearly explained to them, but not when they could only watch sorting examples. In fact, the relational matching task without explanation requires analogy abilities that do not seem to be fully developed at 3 years of age. The discrepancies in performances between children tested with the two procedures, with the task explained or not, and the discrepancies observed between children and baboons are discussed in relation to differences between species and/or problem-solving strategies.
|
|
|
Boysen, S. T., Bernston, G. G., Hannan, M. B., & Cacioppo, J. T. (1996). Quantity-based interference and symbolic representations in chimpanzees (Pan troglodytes). J Exp Psychol Anim Behav Process, 22(1), 76–86.
Abstract: Five chimpanzees with training in counting and numerical skills selected between 2 arrays of different amounts of candy or 2 Arabic numerals. A reversed reinforcement contingency was in effect, in which the selected array was removed and the subject received the nonselected candies (or the number of candies represented by the nonselected Arabic numeral). Animals were unable to maximize reward by selecting the smaller array when candies were used as array elements. When Arabic numerals were substituted for the candy arrays, all animals showed an immediate shift to a more optimal response strategy of selecting the smaller numeral, thereby receiving the larger reward. Results suggest that a response disposition to the high-incentive candy stimuli introduced a powerful interference effect on performance, which was effectively overridden by the use of symbolic representations.
|
|
|
Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282(5389), 746–749.
Abstract: A fundamental question in cognitive science is whether animals can represent numerosity (a property of a stimulus that is defined by the number of discriminable elements it contains) and use numerical representations computationally. Here, it was shown that rhesus monkeys represent the numerosity of visual stimuli and detect their ordinal disparity. Two monkeys were first trained to respond to exemplars of the numerosities 1 to 4 in an ascending numerical order (1 --> 2 --> 3 --> 4). As a control for non-numerical cues, exemplars were varied with respect to size, shape, and color. The monkeys were later tested, without reward, on their ability to order stimulus pairs composed of the novel numerosities 5 to 9. Both monkeys responded in an ascending order to the novel numerosities. These results show that rhesus monkeys represent the numerosities 1 to 9 on an ordinal scale.
|
|