|
Hertsch, B., & Becker, C. (1986). [Occurrence of aseptic necrosis of the palmar and plantar ligament in the horse--a contribution to the differentiation of sesamoid bone diseases]. Dtsch Tierarztl Wochenschr, 93(6), 263–266.
|
|
|
Landsberg, G., & Araujo, J. A. (2005). Behavior problems in geriatric pets. Vet Clin North Am Small Anim Pract, 35(3), 675–698.
Abstract: Aging pets often suffer a decline in cognitive function (eg, memory,learning, perception, awareness) likely associated with age-dependent brain alterations. Clinically, cognitive dysfunction may result in various behavioral signs, including disorientation; forgetting of previously learned behaviors, such as house training; alterations in the manner in which the pet interacts with people or other pets;onset of new fears and anxiety; decreased recognition of people, places, or pets; and other signs of deteriorating memory and learning ability. Many medical problems, including other forms of brain pathologic conditions, can contribute to these signs. The practitioner must first determine the cause of the behavioral signs and then determine an appropriate course of treatment, bearing in mind the constraints of the aging process. A diagnosis of cognitive dysfunction syndrome is made once other medical and behavioral causes are ruled out.
|
|
|
Madigan, J. E., & Bell, S. A. (2001). Owner survey of headshaking in horses. J Am Vet Med Assoc, 219(3), 334–337.
Abstract: OBJECTIVE: To determine signalment, history, clinical signs, duration, seasonality, and response to various treatments reported by owners for headshaking in horses. DESIGN: Owner survey. ANIMALS: 109 horses with headshaking. PROCEDURE: Owners of affected horses completed a survey questionnaire. RESULTS: 78 affected horses were geldings, 29 were mares, and 2 were stallions. Mean age of onset was 9 years. Headshaking in 64 horses had a seasonal component, and for most horses, headshaking began in spring and ceased in late summer or fall. The most common clinical signs were shaking the head in a vertical plane, acting like an insect was flying up the nostril, snorting excessively, rubbing the muzzle on objects, having an anxious expression while headshaking, worsening of clinical signs with exposure to sunlight, and improvement of clinical signs at night. Treatment with antihistamines, nonsteroidal anti-inflammatory drugs, corticosteroids, antimicrobials, fly control, chiropractic, and acupuncture had limited success. Sixty-one horses had been treated with cyproheptadine; 43 had moderate to substantial improvement. CONCLUSIONS AND CLINICAL RELEVANCE: Headshaking may have many causes. A large subset of horses have similar clinical signs including shaking the head in a vertical plane, acting as if an insect were flying up the nostrils, and rubbing the muzzle on objects. Seasonality and worsening of clinical signs with exposure to light are also common features of this syndrome. Geldings and Thoroughbreds appear to be overrepresented. Cyproheptadine treatment was beneficial in more than two thirds of treated horses.
|
|
|
Murray, R. C., Dyson, S. J., Tranquille, C., & Adams, V. (2006). Association of type of sport and performance level with anatomical site of orthopaedic injury diagnosis. Equine Vet J Suppl, (36), 411–416.
Abstract: REASON FOR PERFORMING STUDY: Although anecdotal reports of increased orthopaedic injury risk in equine sports exist, there is little scientific evidence to support this. OBJECTIVES: To test whether horses undertaking a single competitive sport have increased risk of specific injuries compared to those used for general purpose riding (GP); and whether injury type varies with sport category and performance level. METHODS: Data from 1069 records of horses undergoing orthopaedic evaluation (1998-2003) and meeting inclusion criteria were reviewed. Sport category (GP, showjumping, dressage, eventing, racing), level (nonelite or elite) and diagnosis were recorded. Effects of sport category and level on probability of a specific diagnosis were assessed using chi-squared tests. Logistic regression was used to determine which competitive sports and levels increased risk of injury compared with GP. RESULTS: Overall there was a significant effect of sport category and level on diagnosis (P<0.0001). There was significant difference between anatomical site injured and sport category (P<0.0001); a high risk of forelimb superficial digital flexor tendon injury in elite eventing (P<0.0001) and elite showjumping (P = 0.02); distal deep digital flexor tendon (DDFT) injury in elite showjumping (P = 0.002); and hindlimb suspensory ligament injury in elite (P<0.0001) and nonelite (P = 0.001) dressage. There was a low risk of tarsal injury in elite eventing (P = 0.01) and proximal DDFT injury in dressage (P = 0.01). CONCLUSIONS: Horses competing in different sports are predisposed to specific injuries; particular sports may increase the risk of injury at certain anatomical sites; and the type and site of injury may reflect the type and level of performance. POTENTIAL RELEVANCE: These findings could guide clinicians in the diagnosis of sport related injuries.
|
|
|
Quiroz-Rothe, E., Novales, M., Aguilera-Tejero, E., & Rivero, J. L. L. (2002). Polysaccharide storage myopathy in the M. longissimus lumborum of showjumpers and dressage horses with back pain. Equine Vet J, 34(2), 171–176.
Abstract: This study was designed to investigate whether horses with clinical signs of back pain due to suspected soft tissue injuries were affected by polysaccharide storage myopathy (PSSM). Diagnosis of PSSM in muscle biopsies obtained from the M. longissimus lumborum of 5 showjumpers and 4 dressage horses with a history of back pain is reported. M. longissimus lumborum biopsies of these horses were characterised histopathologically and in 3/9 cases also by electron microscopy. Observations were compared with M. gluteus biopsies of the same horses, and with M. gluteus biopsies obtained from 6 Standardbreds with recurrent exertional rhabdomyolysis and from 6 healthy trotters. M. longissimus biopsies from horses with back pain showed pathognomonic signs of PSSM, i.e. high glycogen and/or abnormal complex amylase-resistant polysaccharide deposits. Similar features were found in M. gluteus biopsies of the same horses. Sections of horses with rhabdomyolysis had increased PAS stain when compared with healthy horses, but did not show amylase-resistant material. Qualitative observations were corroborated by quantitative histochemistry (optical densities) of sections stained with PAS and amylase PAS. This study demonstrated the presence of PSSM in the M. longissimus of showjumpers and dressage horses with back pain and indicates that epaxial muscle biopsy is an option in diagnosing back problems in horses when clinical examination and imaging techniques do not provide a precise diagnosis.
|
|
|
Sinclair, M., Buhrmann, G., & Gummow, B. (2006). An epidemiological investigation of the African horsesickness outbreak in the Western Cape Province of South Africa in 2004 and its relevance to the current equine export protocol. J S Afr Vet Assoc, 77(4), 191–196.
Abstract: African Horsesickness (AHS) is a controlled disease in South Africa. The country is divided into an infected area and a control area. An outbreak of AHS in the control area can result in a ban of exports for at least 2 years. A retrospective epidemiological study was carried out on data collected during the 2004 AHS outbreak in the surveillance zone of the AHS control area in the Western Cape Province. The objective of this study was to describe the 2004 outbreak and compare it with the 1999 AHS outbreak in the same area. As part of the investigation, a questionnaire survey was conducted in the 30 km radius surrounding the index case. Spatial, temporal and population patterns for the outbreak are described. The investigation found that the outbreak occurred before any significant rainfall and that the main AHS vector (Culicoides imicola) was present in abundance during the outbreak. Furthermore, 63% of cases occurred at temperatures < or = 15 degrees C, the Eerste River Valley was a high risk area, only 17% of owners used vector protection as a control measure and 70% of horses in the outbreak area were protected by means of vaccination at the start of the outbreak. The study revealed that the current AHS control measures do not function optimally because of the high percentage of vaccinated horses in the surveillance zone, which results in insufficient sentinel animals and the consequent failure of the early warning system. Alternative options for control that allow continued export are discussed in the paper.
|
|