|
Allen, D., & Tanner, K. (2007). Putting the horse back in front of the cart: using visions and decisions about high-quality learning experiences to drive course design. CBE Life Sci Educ, 6(2), 85–89.
|
|
|
Amé, J. - M., Halloy, J., Rivault, C., Detrain, C., & Deneubourg, J. L. (2006). Collegial decision making based on social amplification leads to optimal group formation. Proc. Natl. Acad. Sci. U.S.A., 103(15), 5835–5840.
Abstract: Group-living animals are often faced with choosing between one or more alternative resource sites. A central question in such collective decision making includes determining which individuals induce the decision and when. This experimental and theoretical study of shelter selection by cockroach groups demonstrates that choices can emerge through nonlinear interaction dynamics between equal individuals without perfect knowledge or leadership. We identify a simple mechanism whereby a decision is taken on the move with limited information and signaling and without comparison of available opportunities. This mechanism leads to optimal mean benefit for group individuals. Our model points to a generic self-organized collective decision-making process independent of animal species.
|
|
|
Biro, D., Sumpter, D. J. T., Meade, J., & Guilford, T. (2006). From Compromise to Leadership in Pigeon Homing. Curr Biol, 16(21), 2123–2128.
Abstract: Summary A central problem faced by animals traveling in groups is how navigational decisions by group members are integrated, especially when members cannot assess which individuals are best informed or have conflicting information or interests , , , and . Pigeons are now known to recapitulate faithfully their individually distinct habitual routes home , and , and this provides a novel paradigm for investigating collective decisions during flight under varying levels of interindividual conflict. Using high-precision GPS tracking of pairs of pigeons, we found that if conflict between two birds' directional preferences was small, individuals averaged their routes, whereas if conflict rose over a critical threshold, either the pair split or one of the birds became the leader. Modeling such paired decision-making showed that both outcomes--compromise and leadership--could emerge from the same set of simple behavioral rules. Pairs also navigated more efficiently than did the individuals of which they were composed, even though leadership was not necessarily assumed by the more efficient bird. In the context of mass migration of birds and other animals, our results imply that simple self-organizing rules can produce behaviors that improve accuracy in decision-making and thus benefit individuals traveling in groups , and .
|
|
|
Conradt, L., & Roper, T. J. (2003). Group decision-making in animals. Nature, 421(6919), 155–158.
Abstract: Groups of animals often need to make communal decisions, for example about which activities to perform, when to perform them and which direction to travel in; however, little is known about how they do so. Here, we model the fitness consequences of two possible decision-making mechanisms: 'despotism' and 'democracy'. We show that under most conditions, the costs to subordinate group members, and to the group as a whole, are considerably higher for despotic than for democratic decisions. Even when the despot is the most experienced group member, it only pays other members to accept its decision when group size is small and the difference in information is large. Democratic decisions are more beneficial primarily because they tend to produce less extreme decisions, rather than because each individual has an influence on the decision per se. Our model suggests that democracy should be widespread and makes quantitative, testable predictions about group decision-making in non-humans.
|
|
|
Danchin, E., Giraldeau, L. - A., Valone, T. J., & Wagner, R. H. (2004). Public information: from nosy neighbors to cultural evolution. Science, 305(5683), 487–491.
Abstract: Psychologists, economists, and advertising moguls have long known that human decision-making is strongly influenced by the behavior of others. A rapidly accumulating body of evidence suggests that the same is true in animals. Individuals can use information arising from cues inadvertently produced by the behavior of other individuals with similar requirements. Many of these cues provide public information about the quality of alternatives. The use of public information is taxonomically widespread and can enhance fitness. Public information can lead to cultural evolution, which we suggest may then affect biological evolution.
|
|
|
de Waal, F. B. M., & Davis, J. M. (2003). Capuchin cognitive ecology: cooperation based on projected returns. Neuropsychologia, 41(2), 221–228.
Abstract: Stable cooperation requires that each party's pay-offs exceed those available through individual action. The present experimental study on brown capuchin monkeys (Cebus apella) investigated if decisions about cooperation are (a) guided by the amount of competition expected to follow the cooperation, and (b) made instantaneously or only after a period of familiarization. Pairs of adult monkeys were presented with a mutualistic cooperative task with variable opportunities for resource monopolization (clumped versus dispersed rewards), and partner relationships (kin versus nonkin). After pre-training, each pair of monkeys (N=11) was subjected to six tests, consisting of 15 2 min trials each, with rewards available to both parties. Clumped reward distribution had an immediate negative effect on cooperation: this effect was visible right from the start, and remained visible even if clumped trials alternated with dispersed trials. The drop in cooperation was far more dramatic for nonkin than kin, which was explained by the tendency of dominant nonkin to claim more than half of the rewards under the clumped condition. The immediacy of responses suggests a decision-making process based on predicted outcome of cooperation. Decisions about cooperation thus take into account both the opportunity for and the likelihood of subsequent competition over the spoils.
|
|
|
Devenport, J. A., Patterson, M. R., & Devenport, L. D. (2005). Dynamic averaging and foraging decisions in horses (Equus callabus). J. Comp. Psychol., 119(3), 352–358.
Abstract: The variability of most environments taxes foraging decisions by increasing the uncertainty of the information available. One solution to the problem is to use dynamic averaging, as do some granivores and carnivores. Arguably, the same strategy could be useful for grazing herbivores, even though their food renews and is more homogeneously distributed. Horses (Equus callabus) were given choices between variable patches after short or long delays. When patch information was current, horses returned to the patch that was recently best, whereas those without current information matched choices to the long-term average values of the patches. These results demonstrate that a grazing species uses dynamic averaging and indicate that, like granivores and carnivores, they can use temporal weighting to optimize foraging decisions.
|
|
|
Dyer, J. R. G., Johansson, A., Helbing, D., Couzin, I. D., & Krause, J. (2009). Leadership, consensus decision making and collective behaviour in humans. Phil. Trans. Biol. Sci., 364(1518), 781–789.
Abstract: This paper reviews the literature on leadership in vertebrate groups, including recent work on human groups, before presenting the results of three new experiments looking at leadership and decision making in small and large human groups. In experiment 1, we find that both group size and the presence of uninformed individuals can affect the speed with which small human groups (eight people) decide between two opposing directional preferences and the likelihood of the group splitting. In experiment 2, we show that the spatial positioning of informed individuals within small human groups (10 people) can affect the speed and accuracy of group motion. We find that having a mixture of leaders positioned in the centre and on the edge of a group increases the speed and accuracy with which the group reaches their target. In experiment 3, we use large human crowds (100 and 200 people) to demonstrate that the trends observed from earlier work using small human groups can be applied to larger crowds. We find that only a small minority of informed individuals is needed to guide a large uninformed group. These studies build upon important theoretical and empirical work on leadership and decision making in animal groups.
|
|
|
Gould, J. L. (2004). Animal cognition. Curr Biol, 14(10), R372–5.
|
|
|
Holekamp, K. E., Sakai, S. T., & Lundrigan, B. L. (2007). Social intelligence in the spotted hyena (Crocuta crocuta). Philos Trans R Soc Lond B Biol Sci, 362(1480), 523–538.
Abstract: If the large brains and great intelligence characteristic of primates were favoured by selection pressures associated with life in complex societies, then cognitive abilities and nervous systems with primate-like attributes should have evolved convergently in non-primate mammals living in large, elaborate societies in which social dexterity enhances individual fitness. The societies of spotted hyenas are remarkably like those of cercopithecine primates with respect to size, structure and patterns of competition and cooperation. These similarities set an ideal stage for comparative analysis of social intelligence and nervous system organization. As in cercopithecine primates, spotted hyenas use multiple sensory modalities to recognize their kin and other conspecifics as individuals, they recognize third-party kin and rank relationships among their clan mates, and they use this knowledge adaptively during social decision making. However, hyenas appear to rely more intensively than primates on social facilitation and simple rules of thumb in social decision making. No evidence to date suggests that hyenas are capable of true imitation. Finally, it appears that the gross anatomy of the brain in spotted hyenas might resemble that in primates with respect to expansion of frontal cortex, presumed to be involved in the mediation of social behaviour.
|
|