|
Bertram, D. S. (1971). Mosquitoes of British Honduras, with some comments on malaria, and on arbovirus antibodies in man and equines. Trans R Soc Trop Med Hyg, 65(6), 742–762.
|
|
|
Edman, J. D. (1971). Host-feeding patterns of Florida mosquitoes. I. Aedes, Anopheles, Coquillettidia, Mansonia and Psorophora. J Med Entomol, 8(6), 687–695.
|
|
|
Endy, T. P., & Nisalak, A. (2002). Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol, 267, 11–48.
|
|
|
Hall, R. A., Broom, A. K., Smith, D. W., & Mackenzie, J. S. (2002). The ecology and epidemiology of Kunjin virus. Curr Top Microbiol Immunol, 267, 253–269.
|
|
|
Marfin, A. A., Petersen, L. R., Eidson, M., Miller, J., Hadler, J., Farello, C., et al. (2001). Widespread West Nile virus activity, eastern United States, 2000. Emerg Infect Dis, 7(4), 730–735.
Abstract: In 1999, the U.S. West Nile (WN) virus epidemic was preceded by widespread reports of avian deaths. In 2000, ArboNET, a cooperative WN virus surveillance system, was implemented to monitor the sentinel epizootic that precedes human infection. This report summarizes 2000 surveillance data, documents widespread virus activity in 2000, and demonstrates the utility of monitoring virus activity in animals to identify human risk for infection.
|
|
|
Mellor, P. S. (1993). African horse sickness: transmission and epidemiology. Vet Res, 24(2), 199–212.
Abstract: African horse sickness (AHS) virus causes a non-contagious, infectious, arthropod-borne disease of equines and occasionally of dogs. The virus is widely distributed across sub-Saharan African where it is transmitted between susceptible vertebrate hosts by the vectors. These are usually considered to be species of Culicoides biting midges but mosquitoes and/or ticks may also be involved to a greater or lesser extent. Periodically the virus makes excursions beyond its sub-Saharan enzootic zones but until recently does not appear to have been able to maintain itself outside these areas for more than 2-3 consecutive years at most. This is probably due to a number of factors including the apparent absence of a long term vertebrate reservoir, the prevalence and seasonal incidence of the vectors and the efficiency of control measures (vaccination and vector abatement). The recent AHS epizootics in Iberia and N Africa spanning as they do, 5 or more yr, seem to have established a new pattern in AHS virus persistence. This is probably linked to the continuous presence of adult C imicola in the area. Culicoides imicola is basically an Afro-Asiatic insect and prefers warm climates. Therefore its continuous adult presence in parts of Iberia and N Africa may be due to some recent moderations of the climate in these areas.
|
|
|
Mellor, P. S., & Hamblin, C. (2004). African horse sickness. Vet Res, 35(4), 445–466.
Abstract: African horse sickness virus (AHSV) causes a non-contagious, infectious insect-borne disease of equids and is endemic in many areas of sub-Saharan Africa and possibly Yemen in the Arabian Peninsula. However, periodically the virus makes excursions beyond its endemic areas and has at times extended as far as India and Pakistan in the east and Spain and Portugal in the west. The vectors are certain species of Culicoides biting midge the most important of which is the Afro-Asiatic species C. imicola. This paper describes the effects that AHSV has on its equid hosts, aspects of its epidemiology, and present and future prospects for control. The distribution of AHSV seems to be governed by a number of factors including the efficiency of control measures, the presence or absence of a long term vertebrate reservoir and, most importantly, the prevalence and seasonal incidence of the major vector which is controlled by climate. However, with the advent of climate-change the major vector, C. imicola, has now significantly extended its range northwards to include much of Portugal, Spain, Italy and Greece and has even been recorded from southern Switzerland. Furthermore, in many of these new locations the insect is present and active throughout the entire year. With the related bluetongue virus, which utilises the same vector species of Culicoides this has, since 1998, precipitated the worst outbreaks of bluetongue disease ever recorded with the virus extending further north in Europe than ever before and apparently becoming endemic in that continent. The prospects for similar changes in the epidemiology and distribution of AHSV are discussed.
|
|
|
Mitchell, C. J., Darsie, R. F. J., Monath, T. P., Sabattini, M. S., & Daffner, J. (1985). The use of an animal-baited net trap for collecting mosquitoes during western equine encephalitis investigations in Argentina. J Am Mosq Control Assoc, 1(1), 43–47.
Abstract: A large net trap was used to sample mosquito populations attracted to horses at three sites each in Santa Fe and Rio Negro Provinces, Argentina, during the austral summer of 1984. These provinces, as well as others in Argentina, were affected by a severe epizootic of western equine encephalitis (WEE) during 1982-83. Totals of 2,752 and 6,929 mosquitoes were collected in Santa Fe and Rio Negro Provinces during five and three trap nights, respectively. Culex mosquitoes of the subgenus Culex were predominant (45.8% of total) in the Santa Fe collections, although Aedes albifasciatus also was prevalent (21.7%). The latter species was predominant (95.7% of total) in the Rio Negro collections. The mosquito fauna was less complex (minimum of 6 species) in Rio Negro Province as compared to Santa Fe Province (minimum of 18 species). The advantages of the net trap indicate that this trap can become a useful tool in arbovirus ecology studies in other areas.
|
|
|
Scherer, W. F., & Dickerman, R. W. (1972). Ecologic studies of Venezuelan encephalitis virus in southeastern Mexico. 8. Correlations and conclusions. Am J Trop Med Hyg, 21(2), 86–89.
|
|
|
Scherer, W. F., Dickerman, R. W., & Ordonez, J. V. (1970). Discovery and geographic distribution of Venezuelan encephalitis virus in Guatemala, Honduras, and British Honduras during 1965-68, and its possible movement to Central America and Mexico. Am J Trop Med Hyg, 19(4), 703–711.
|
|