|
Bertram, D. S. (1971). Mosquitoes of British Honduras, with some comments on malaria, and on arbovirus antibodies in man and equines. Trans R Soc Trop Med Hyg, 65(6), 742–762.
|
|
|
Dauphin, G., Zientara, S., Zeller, H., & Murgue, B. (2004). West Nile: worldwide current situation in animals and humans. Comp Immunol Microbiol Infect Dis, 27(5), 343–355.
Abstract: West Nile (WN) virus is a mosquito-borne flavivirus that is native to Africa, Europe, and Western Asia. It mainly circulates among birds, but can infect many species of mammals, as well as amphibians and reptiles. Epidemics can occur in rural as well as urban areas. Transmission of WN virus, sometimes involving significant mortality in humans and horses, has been documented at erratic intervals in many countries, but never in the New World until it appeared in New York City in 1999. During the next four summers it spread with incredible speed to large portions of 46 US states, and to Canada, Mexico, Central America and the Caribbean. In many respects, WN virus is an outstanding example of a zoonotic pathogen that has leaped geographical barriers and can cause severe disease in human and equine. In Europe, in the past two decades there have been a number of significant outbreaks in several countries. However, very little is known of the ecology and natural history of WN virus transmission in Europe and most WN outbreaks in humans and animals remain unpredictable and difficult to control.
|
|
|
Hardy, J. L. (1987). The ecology of western equine encephalomyelitis virus in the Central Valley of California, 1945-1985. Am J Trop Med Hyg, 37(3 Suppl), 18s–32s.
Abstract: Reeves' concept of the summer transmission cycle of western equine encephalomyelitis virus in 1945 was that the virus was amplified in a silent transmission cycle involving mosquitoes, domestic chickens, and possibly wild birds, from which it could be transmitted tangentially to and cause disease in human and equine populations. Extensive field and laboratory studies done since 1945 in the Central Valley of California have more clearly defined the specific invertebrate and vertebrate hosts involved in the basic virus transmission cycle, but the overall concept remains unchanged. The basic transmission cycle involves Culex tarsalis as the primary vector mosquito species and house finches and house sparrows as the primary amplifying hosts. Secondary amplifying hosts, upon which Cx. tarsalis frequently feeds, include other passerine species, chickens, and possibly pheasants in areas where they are abundant. Another transmission cycle that most likely is initiated from the Cx. tarsalis-wild bird cycle involves Aedes melanimon and the blacktail jackrabbit. Like humans and horses, California ground squirrels, western tree squirrels, and a few other wild mammal species become infected tangentially with the virus but do not contribute significantly to virus amplification.
|
|
|
Komar, N. (2003). West Nile virus: epidemiology and ecology in North America. Adv Virus Res, 61, 185–234.
|
|
|
Scherer, W. F., & Dickerman, R. W. (1972). Ecologic studies of Venezuelan encephalitis virus in southeastern Mexico. 8. Correlations and conclusions. Am J Trop Med Hyg, 21(2), 86–89.
|
|
|
Valero, N. (2003). West Nile virus: a new challenge? Invest Clin, 44(3), 175–177.
Abstract: West Nile Virus (WNV), a member of the family Flaviviridae, was first isolated in 1937. Since the original isolation of the WNV outbreaks have occurred with increase in frequency of cases in humans and horses, apparent increase in severe human disease and high avian death rates. In 1999, 2000 and 2002 outbreaks of the WNV encephalitis were reported in horses, birds and humans from New York and Canada. Ornithophilic mosquitoes are the principal vectors of the WNV and birds of several species chiefly migrants appear to be the major introductory or amplifying host. The pattern of outbreaks in the old and new world suggests that viremic migratory birds may also contribute to movement of the virus. If so, Central America, Caribbean Islands and countries of South America including Venezuela, are in potential risk for suffering a severe outbreak for WNV, since several species of birds have populations that pass trough New York and cross the western north Atlantic or Caribbean Sea. It is important the knowledge of the ecology of WNV as well of the efficacy of control efforts in order to minimize the public health impact in these countries, where all population is susceptible to this infection.
|
|
|
Wang, L. Y. (1975). Host preference of mosquito vectors of Japanese encephalitis. Zhonghua Min Guo Wei Sheng Wu Xue Za Zhi, 8(4), 274–279.
Abstract: The host preference of 4 Culex mosquito species collected in Miaoli and Pingtung counties, Taiwan was studied by capillary precipitin method. Antisera to alum-precipitated sera of man, bovine, swine, rabbit, horse, dog, cat, mouse, chicken, duck, and pigeon were produced in rabbits and reacted with 758 mosquito blood meals among which reactions to one or more antisera. Culex annulus and Culex tritaeniorhynchus summorosus showed a great avidity for pig, and Culex fuscocephala for bovine. Culex pipiens fatigans was ornithophilic. None of 110 C. t. summorosus and 2.4% of 223 C. annulus had fed on man. Among 66 samples of C.p. fatigans tested 10.3% had fed on man, while none of 359 C. fuscocephala did. It seems that the latter does not act as a primary vector of Japanese encephalitis.
|
|