|
Bugnyar, T., & Heinrich, B. (2006). Pilfering ravens, Corvus corax, adjust their behaviour to social context and identity of competitors. Anim. Cogn., 9(4), 369–376.
Abstract: Like other corvids, food-storing ravens protect their caches from being pilfered by conspecifics by means of aggression and by re-caching. In the wild and in captivity, potential pilferers rarely approach caches until the storers have left the cache vicinity. When storers are experimentally prevented from leaving, pilferers first search at places other than the cache sites. These behaviours raise the possibility that ravens are capable of withholding intentions and providing false information to avoid provoking the storers' aggression for cache protection. Alternatively, birds may refrain from pilfering to avoid conflicts with dominants. Here we examined whether ravens adjust their pilfer tactics according to social context and type of competitors. We allowed birds that had witnessed a conspecific making caches to pilfer those caches either in private, together with the storer, or together with a conspecific bystander that had not created the caches (non-storer) but had seen them being made. Compared to in-private trials, ravens delayed approaching the caches only in the presence of storers. Furthermore, they quickly engaged in searching away from the caches when together with dominant storers but directly approached the caches when together with dominant non-storers. These findings demonstrate that ravens selectively alter their pilfer behaviour with those individuals that are likely to defend the caches (storers) and support the interpretation that they are deceptively manipulating the others' behaviour.
|
|
|
Heinrich, B., & Bugnyar, T. (2007). Just how smart are ravens? Sci Am, 296(4), 64–71.
|
|
|
Hunt, G. R., Rutledge, R. B., & Gray, R. D. (2006). The right tool for the job: what strategies do wild New Caledonian crows use? Anim. Cogn., 9(4), 307–316.
Abstract: New Caledonian crows Corvus moneduloides (NC crows) display sophisticated tool manufacture in the wild, but the cognitive strategy underlying these skills is poorly understood. Here, we investigate what strategy two free-living NC crows used in response to a tool-length task. The crows manufactured tools to extract food from vertical holes of different depths. The first tools they made in visits were of a similar length regardless of the hole depth. The typical length was usually too short to extract food from the deep holes, which ruled out a strategy of immediate causal inference on the first attempt in a trial. When the first tool failed, the crows made second tools significantly longer than the unsuccessful first tools. There was no evidence that the crows made the lengths of first tools to directly match hole depth. We argue that NC crows may generally use a two-stage heuristic strategy to solve tool problems and that performance on the first attempt in a trial is not necessarily the 'gold standard' for assessing folk physics.
|
|
|
Lazareva, O. F., Smirnova, A. A., Bagozkaja, M. S., Zorina, Z. A., Rayevsky, V. V., & Wasserman, E. A. (2004). Transitive responding in hooded crows requires linearly ordered stimuli. J Exp Anal Behav, 82(1), 1–19.
Abstract: Eight crows were taught to discriminate overlapping pairs of visual stimuli (A+ B-, B+ C-, C+ D-, and D+ E-). For 4 birds, the stimuli were colored cards with a circle of the same color on the reverse side whose diameter decreased from A to E (ordered feedback group). These circles were made available for comparison to potentially help the crows order the stimuli along a physical dimension. For the other 4 birds, the circles corresponding to the colored cards had the same diameter (constant feedback group). In later testing, a novel choice pair (BD) was presented. Reinforcement history involving stimuli B and D was controlled so that the reinforcement/nonreinforcement ratios for the latter would be greater than for the former. If, during the BD test, the crows chose between stimuli according to these reinforcement/nonreinforcement ratios, then they should prefer D; if they chose according to the diameter of the feedback stimuli, then they should prefer B. In the ordered feedback group, the crows strongly preferred B over D; in the constant feedback group, the crows' choice did not differ significantly from chance. These results, plus simulations using associative models, suggest that the orderability of the postchoice feedback stimuli is important for crows' transitive responding.
|
|
|
McCoy, D. E., Schiestl, M., Neilands, P., Hassall, R., Gray, R. D., & Taylor, A. H. (2019). New Caledonian Crows Behave Optimistically after Using Tools. Current Biology, .
Abstract: Summary Are complex, species-specific behaviors in animals reinforced by material reward alone or do they also induce positive emotions? Many adaptive human behaviors are intrinsically motivated: they not only improve our material outcomes, but improve our affect as well [1, 2, 3, 4, 5, 6, 7, 8]. Work to date on animal optimism, as an indicator of positive affect, has generally focused on how animals react to change in their circumstances, such as when their environment is enriched [9, 10, 11, 12, 13, 14] or they are manipulated by humans [15, 16, 17, 18, 19, 20, 21, 22, 23], rather than whether complex actions improve emotional state. Here, we show that wild New Caledonian crows are optimistic after tool use, a complex, species-specific behavior. We further demonstrate that this finding cannot be explained by the crows needing to put more effort into gaining food. Our findings therefore raise the possibility that intrinsic motivation (enjoyment) may be a fundamental proximate cause in the evolution of tool use and other complex behaviors. Video Abstract
|
|
|
Range, F., Bugnyar, T., Schlogl, C., & Kotrschal, K. (2006). Individual and sex differences in learning abilities of ravens. Behav. Process., 73(1), 100–106.
Abstract: Behavioral and physiological characteristics of individuals within the same species have been found to be stable across time and contexts. In this study, we investigated individual differences in learning abilities and object and social manipulation to test for consistency within individuals across different tasks. Individual ravens (Corvus corax) were tested in simple color and position discrimination tasks to establish their learning abilities. We found that males were significantly better in the acquisition of the first discrimination task and the object manipulation task, but not in any of the other tasks. Furthermore, faster learners engaged less often in manipulations of conspecifics and exploration of objects to get access to food. No relationship between object and social manipulation and reversal training were found. Our results suggest that individual differences in regard to the acquisition of new tasks may be related to personalities or at least object manipulation in ravens.
|
|
|
Straub, A. (2007). An intelligent crow beats a lab. Science, 316(5825), 688.
|
|
|
Tebbich, S., Seed, A. M., Emery, N. J., & Clayton, N. S. (2007). Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem. Anim. Cogn., 10(2), 225–231.
Abstract: The trap-tube problem is used to assess whether an individual is able to foresee the outcome of its actions. To solve the task, an animal must use a tool to push a piece of food out of a tube, which has a trap along its length. An animal may learn to avoid the trap through a rule based on associative processes, e.g. using the distance of trap or food as a cue, or by understanding relations between cause and effect. This task has been used to test physical cognition in a number of tool-using species, but never a non-tool-user. We developed an experimental design that enabled us to test non-tool-using rooks, Corvus frugilegus. Our modification of the task removed the cognitive requirements of active tool use but still allowed us to test whether rooks can solve the trap-tube problem, and if so how. Additionally, we developed two new control tasks to determine whether rooks were able to transfer knowledge to similar, but novel problems, thus revealing more about the mechanisms involved in solving the task. We found that three out of seven rooks solved the modified trap-tube problem task, showing that the ability to solve the trap-tube problem is not restricted to tool-using animals. We found no evidence that the birds solved the task using an understanding of its causal properties, given that none of the birds passed the novel transfer tasks.
|
|
|
Weir, A. A. S., & Kacelnik, A. (2006). A New Caledonian crow (Corvus moneduloides) creatively re-designs tools by bending or unbending aluminium strips. Anim. Cogn., 9(4), 317–334.
Abstract: Previous observations of a New Caledonian crow (Corvus moneduloides) spontaneously bending wire and using it as a hook [Weir et al. (2002) Science 297:981] have prompted questions about the extent to which these animals 'understand' the physical causality involved in how hooks work and how to make them. To approach this issue we examine how the same subject (“Betty”) performed in three experiments with novel material, which needed to be either bent or unbent in order to function to retrieve food. These tasks exclude the possibility of success by repetition of patterns of movement similar to those employed before. Betty quickly developed novel techniques to bend the material, and appropriately modified it on four of five trials when unbending was required. She did not mechanically apply a previously learned set of movements to the new situations, and instead sought new solutions to each problem. However, the details of her behaviour preclude concluding definitely that she understood and planned her actions: in some cases she probed with the unmodified tools before modifying them, or attempted to use the unmodified (unsuitable) end of the tool after modification. Gauging New Caledonian crows' level of understanding is not yet possible, but the observed behaviour is consistent with a partial understanding of physical tasks at a level that exceeds that previously attained by any other non-human subject, including apes.
|
|