|
Crockford, C., Wittig, R. M., Seyfarth, R. M., & Cheney, D. L. (2007). Baboons eavesdrop to deduce mating opportunities. Anim. Behav., 73(5), 885–890.
Abstract: Many animals appear to monitor changes in other individuals' dominance ranks and social relationships and to track changes in them. However, it is not known whether they also track changes in very transient relationships. Rapid recognition of a temporary separation between a dominant male and a sexually receptive female, for example, should be adaptive in species where subordinate males use opportunistic strategies to achieve mating success. Dominant male baboons (Papio hamadryas ursinus) form sexual consortships with oestrous females that are characterized by mate guarding and close proximity. To assess whether subordinate males track temporary changes in the status of other males' consortships, we conducted playback experiments using a two-speaker paradigm. In the test condition, subjects heard the consort male's grunts played from one speaker and his consort female's copulation call played from a speaker approximately 40 m away. This sequence suggested that the male and female had temporarily separated and that the female was mating with another male. In a control trial, subjects heard another dominant male's grunts played from one speaker and the female's copulation call played from the other. In a second control trial, conducted within 24 h after the consortship had ended, subjects again heard the consort male's grunt and the female's copulation call played from separate speakers. As predicted, subjects responded strongly only in the test condition. Eavesdropping upon the temporal and spatial juxtaposition of other individuals' vocalizations may be one strategy by which male baboons achieve sneaky matings.
|
|
|
Dunbar, R. I., & Dunbar, E. P. (1976). Contrasts in social structure among black-and-white colobus monkey groups. Anim. Behav., 24(1), 84–92.
Abstract: Three types of Colobus guereza groups may be distinguished on the bases of size and composition, namely small one-male groups, large, one-male groups and multi-male groups. The social structure of each type of group is described in terms of the distribution of non-agonistic interactions, the frequency and distribution of agonistic behaviour and the organization of the roles of vigilance, territorial defence and leadership. A number of differences are found between the group types which appear to be related to the differences in group size and composition. It is suggested that these group types represent stages in the life-cycle of colobus groups, and that such an interpretation may help to resolve some of the conflicting reports in the literature.
|
|
|
Turner, J. W. J., & Kirkpatrick, J. F. (1982). Androgens, behaviour and fertility control in feral stallions. J Reprod Fertil Suppl, 32, 79–87.
Abstract: This field study of feral stallions in Montana and Idaho examines and correlates the seasonal pattern of plasma androgens and specific sociosexual behaviour and reports the effect of a long-acting androgenic steroid on this behaviour and on fertility. Plasma testosterone was measured by competitive protein binding assay in samples obtained by jugular venepuncture from captured animals. In samples taken from 34 sexually mature stallions in 6 different months during the year, a definite seasonal pattern in testosterone was present, with a peak in May (3.04 +/- 0.63 ng/ml) and a nadir in December (1.55 +/- 0.34 ng/ml). Values were less than 2.0 ng/ml in non-breeding months and greater than 2.4 ng/ml in breeding months. Behavioural endpoints measured were (1) stallion scent marking in response to elimination by mares (elimination marking), (2) mounting and (3) copulation. The frequencies of each of these endpoints followed closely the seasonal pattern seen for plasma androgens. In the fertility study microcapsulated testosterone propionate (microTP) was administered i.m. to 10 harem stud stallions 3 months before the 1980 breeding season. In these stallions and in 10 control harem studs, the above behavioural endpoints were examined in the 1980 and 1981 breeding seasons, and foal counts were made in 1981. There were no direct inhibitory or stimulatory effects of microTP treatment on any of the behavioural endpoints in either year. In 1981 foals were produced in 87.5% of the control bands and 28.4% of the microTP-treated bands. These results indicate that microencapsulated testosterone propionate can provide effective fertility control in feral horses without causing significant alterations in sociosexual behaviour.
|
|