|
Abbruzzetti, S., Crema, E., Masino, L., Vecli, A., Viappiani, C., Small, J. R., et al. (2000). Fast events in protein folding: structural volume changes accompanying the early events in the N-->I transition of apomyoglobin induced by ultrafast pH jump. Biophys J, 78(1), 405–415.
Abstract: Ultrafast, laser-induced pH jump with time-resolved photoacoustic detection has been used to investigate the early protonation steps leading to the formation of the compact acid intermediate (I) of apomyoglobin (ApoMb). When ApoMb is in its native state (N) at pH 7.0, rapid acidification induced by a laser pulse leads to two parallel protonation processes. One reaction can be attributed to the binding of protons to the imidazole rings of His24 and His119. Reaction with imidazole leads to an unusually large contraction of -82 +/- 3 ml/mol, an enthalpy change of 8 +/- 1 kcal/mol, and an apparent bimolecular rate constant of (0.77 +/- 0.03) x 10(10) M(-1) s(-1). Our experiments evidence a rate-limiting step for this process at high ApoMb concentrations, characterized by a value of (0. 60 +/- 0.07) x 10(6) s(-1). The second protonation reaction at pH 7. 0 can be attributed to neutralization of carboxylate groups and is accompanied by an apparent expansion of 3.4 +/- 0.2 ml/mol, occurring with an apparent bimolecular rate constant of (1.25 +/- 0.02) x 10(11) M(-1) s(-1), and a reaction enthalpy of about 2 kcal/mol. The activation energy for the processes associated with the protonation of His24 and His119 is 16.2 +/- 0.9 kcal/mol, whereas that for the neutralization of carboxylates is 9.2 +/- 0.9 kcal/mol. At pH 4.5 ApoMb is in a partially unfolded state (I) and rapid acidification experiments evidence only the process assigned to carboxylate protonation. The unusually large contraction and the high energetic barrier observed at pH 7.0 for the protonation of the His residues suggests that the formation of the compact acid intermediate involves a rate-limiting step after protonation.
|
|
|
Bayley, P., Martin, S., & Anson, M. (1975). Temperature-jump circular dichroism: observation of chiroptical relaxation processes at millisecond time resolution. Biochem Biophys Res Commun, 66(1), 303–308.
|
|
|
Cho, K. C., & Chan, K. K. (1984). Kinetics of cold-induced denaturation of metmyoglobin. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology, 786(1-2), 103–108.
Abstract: Using a slow temperature-jump spectrophotometer, we have studied the kinetics of cold-induced denaturation of metmyoglobin between 0[degree sign]C and 20[degree sign]C at acidic pH. The time-scale of the transition is slow and is of the order of minutes. The results are consistent with the transition's involving a total of three states, native (N), transient intermediate (I) and denatured (D), which are converted from one to the other in that order.
|
|
|
Dyson, H. J., & Beattie, J. K. (1982). Spin state and unfolding equilibria of ferricytochrome c in acidic solutions. J Biol Chem, 257(5), 2267–2273.
Abstract: Equilibrium, stopped flow, and temperature-jump spectrophotometry have been used to identify processes in the unfolding of ferricytochrome c in acidic aqueous solutions. A relaxation occurring in approximately 100 microseconds involves perturbation of a spin-equilibrium between two folded conformers of the protein with methionine-80 coordinated or dissociated from the heme iron. The protein unfolds more slowly, in milliseconds, with dissociation and protonation of histidine-18. These two transitions appear cooperative in equilibrium measurements at low (0.01 M) ionic strength, but are separated at higher (0.10 M) ionic strength. They are resolved under both conditions in the dynamic measurements. The spin-equilibrium description permits a unified explanation of a number of properties of ferricytochrome c in acidic aqueous solutions.
|
|
|
Gulotta, M., Rogatsky, E., Callender, R. H., & Dyer, R. B. (2003). Primary folding dynamics of sperm whale apomyoglobin: core formation. Biophys J, 84(3), 1909–1918.
Abstract: The structure, thermodynamics, and kinetics of heat-induced unfolding of sperm whale apomyoglobin core formation have been studied. The most rudimentary core is formed at pH(*) 3.0 and up to 60 mM NaCl. Steady state for ultraviolet circular dichroism and fluorescence melting studies indicate that the core in this acid-destabilized state consists of a heterogeneous composition of structures of approximately 26 residues, two-thirds of the number involved for horse heart apomyoglobin under these conditions. Fluorescence temperature-jump relaxation studies show that there is only one process involved in Trp burial. This occurs in 20 micro s for a 7 degrees jump to 52 degrees C, which is close to the limits placed by diffusion on folding reactions. However, infrared temperature jump studies monitoring native helix burial are biexponential with times of 5 micro s and 56 micro s for a similar temperature jump. Both fluorescence and infrared fast phases are energetically favorable but the slow infrared absorbance phase is highly temperature-dependent, indicating a substantial enthalpic barrier for this process. The kinetics are best understood by a multiple-pathway kinetics model. The rapid phases likely represent direct burial of one or both of the Trp residues and parts of the G- and H-helices. We attribute the slow phase to burial and subsequent rearrangement of a misformed core or to a collapse having a high energy barrier wherein both Trps are solvent-exposed.
|
|
|
Hagen, S. J., & Eaton, W. A. (2000). Two-state expansion and collapse of a polypeptide. J Mol Biol, 301(4), 1019–1027.
Abstract: The initial phase of folding for many proteins is presumed to be the collapse of the polypeptide chain from expanded to compact, but still denatured, conformations. Theory and simulations suggest that this collapse may be a two-state transition, characterized by barrier-crossing kinetics, while the collapse of homopolymers is continuous and multi-phasic. We have used a laser temperature-jump with fluorescence spectroscopy to measure the complete time-course of the collapse of denatured cytochrome c with nanosecond time resolution. We find the process to be exponential in time and thermally activated, with an apparent activation energy approximately 9 k(B)T (after correction for solvent viscosity). These results indicate that polypeptide collapse is kinetically a two-state transition. Because of the observed free energy barrier, the time scale of polypeptide collapse is dramatically slower than is predicted by Langevin models for homopolymer collapse.
|
|
|
Koenen, E. P. C., Aldridge, L. I., & Philipsson, J. (2004). An overview of breeding objectives for warmblood sport horses. Livestock Production Science, 88(1-2), 77–84.
Abstract: The aim of this paper is to review the current breeding objectives of organisations that run a selection programme for warmblood riding horses in the light of an increasing trend in trade of semen across countries. In a questionnaire, 19 horse breeding organisations provided information on breeding objective traits. Variation both in length and amount of details used to define individual breeding objectives was large, reflecting that many traits in sport horse breeding are not easy to measure, and therefore, have to be defined in a subjective way. The majority of the breeding objectives included conformation, gaits and performance in show jumping and dressage. Some breeding objectives also included behaviour, soundness, health and fertility. However, several organisations did not specify the sport discipline and the level of competition (amateur, national or international level) in the breeding objective. In general, relative weightings of the traits within the verbally presented breeding objectives were not given, but were assessed by the organisations in response to this study. The relevance of more information on expected future production circumstances and on the genetic parameters of the traits of interest are discussed. A further review of the consistency, completeness and the number of traits of the present breeding objectives for sport horses is recommended to optimise the efficiency of selection decisions.
|
|
|
Koenen, E. P. C., van Veldhuizen, A. E., & Brascamp, E. W. (1995). Genetic parameters of linear scored conformation traits and their relation to dressage and show-jumping performance in the Dutch Warmblood Riding Horse population. Livestock Production Science, 43(1), 85–94.
Abstract: In this study genetic parameters of linear scored conformation traits of the Dutch Warmblood Riding Horse were estimated in relation to performance in competition. Observations on 10 665 mares were analyzed with an animal model including the fixed effects age, classifier, location and percentage of thoroughbred. Using restricted maximum likelihood algorithms, heritabilities of 26 linear scored conformation traits were estimated in the range 0.09-0.28. Several conformation traits had high up to very high mutual genetic correlations. Competition results of 3476 horses with performance in dressage and 3220 horses with performance in show-jumping were linked to the conformation data to estimate the genetic relationship between conformation and performance in competition. The model for the evaluation of the competition results included the fixed effects riding club, age and sex. Estimated heritabilities for dressage and show-jumping were 0.17 +/- 0.05 and 0.19 +/- 0.04, respectively. Genetic correlations between conformation and performance were low to moderate. The length of the neck, length and position of the shoulders, shape and length of croup and muscularity of the haunches had a significant moderate genetic correlation with dressage. Muscularity of the neck, shape of the croup and muscularity of the haunches had a significant genetic correlation with show-jumping. The results indicate that, due to the low genetic correlations with performance traits, indirect selection for performance using conformation results is of limited value.
|
|
|
Miksovska, J., & Larsen, R. W. (2003). Photothermal studies of pH induced unfolding of apomyoglobin. J Protein Chem, 22(4), 387–394.
Abstract: Conformational dynamic and enthalpy changes associated with pH induced unfolding of apomyoglobin were studied using photoacoustic calorimetry and photothermal beam deflection methods. The transition between the native state and the I intermediate was induced by a nanosecond pH jump from o-nitrobenzaldehyde photolysis. Deconvolution of photoacoustic waves indicates two kinetic processes. The fast phase (T < 50 ns) is characterized by a volume expansion of 8.8 ml mol(-1). This process is followed by a volume contraction of about -22 ml mol(-1) (tau approximately 500 ns). Photothermal beam deflection measurements do not reveal any volume changes on the time scale between approximately 100 micros and 5 ms. We associate the volume contraction with structural changes occurring during the transition between the native state and the I intermediate. The lack of any processes on the ms time scale may indicate the absence of structural events involving larger conformational changes of apomyoglobin after the pH jump.
|
|
|
Pierce, M. M., & Nall, B. T. (2000). Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization. J Mol Biol, 298(5), 955–969.
Abstract: The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.
|
|