|
Grandin, T. (1999). Safe handling of large animals. Occup Med, 14(2), 195–212.
Abstract: The major causes of accidents with cattle, horses, and other grazing animals are: panic due to fear, male dominance aggression, or the maternal aggression of a mother protecting her newborn. Danger is inherent when handling large animals. Understanding their behavior patterns improves safety, but working with animals will never be completely safe. Calm, quiet handling and non-slip flooring are beneficial. Rough handling and excessive use of electric prods increase chances of injury to both people and animals, because fearful animals may jump, kick, or rear. Training animals to voluntarily cooperate with veterinary procedures reduces stress and improves safety. Grazing animals have a herd instinct, and a lone, isolated animal can become agitated. Providing a companion animal helps keep an animal calm.
|
|
|
Shapiro, A. D., Janik, V. M., & Slater, P. J. B. (2003). A gray seal's (Halichoerus grypus) responses to experimenter-given pointing and directional cues. J Comp Psychol, 117(4), 355–362.
Abstract: A gray seal (Halichoerus grypus) was trained to touch a target on its left or right by responding to pointing signals. The authors then tested whether the seal would be able to generalize spontaneously to altered signals. It responded correctly to center pointing and head turning, center upper body turning, and off-center pointing but not to head turning and eye movements alone. The seal also responded correctly to brief ipsilateral and contralateral points from center and lateral positions. Pointing gestures did not cause the seal to select an object placed centrally behind it. Like many animals in similar studies, this gray seal probably did not understand the referential character of these gestures but rather used signal generalization and experience from initial operant conditioning to solve these tasks.
|
|
|
Skov-Rackette, S. I., Miller, N. Y., & Shettleworth, S. J. (2006). What-where-when memory in pigeons. J Exp Psychol Anim Behav Process, 32(4), 345–358.
Abstract: The authors report a novel approach to testing episodic-like memory for single events. Pigeons were trained in separate sessions to match the identity of a sample on a touch screen, to match its location, and to report on the length of the retention interval. When these 3 tasks were mixed randomly within sessions, birds were more than 80% correct on each task. However, performance on 2 different tests in succession after each sample was not consistent with an integrated memory for sample location, time, and identity. Experiment 2 tested binding of location and identity memories in 2 different ways. The results were again consistent with independent feature memories. Implications for tests of episodic-like memory are discussed.
|
|
|
Zentall, T. R. (1999). Support for a theory of memory for event duration must distinguish between test-trial ambiguity and actual memory loss. J Exp Anal Behav, 72(3), 467–472.
Abstract: Staddon and Higa's (1999) trace-strength theory of timing and memory for event duration can account for pigeons' bias to “choose short” when retention intervals are introduced and to “choose long” when, following training with a fixed retention interval, retention intervals are shortened. However, it does not account for the failure of pigeons to choose short when the intertrial interval is distinct from the retention interval. That finding suggests that stimulus generalization (or ambiguity) between the intertrial interval and the retention interval may result in an effect that has been attributed to memory loss. Such artifacts must be eliminated before a theory of memory for event duration can be adequately tested.
|
|