|
Beckers, T., Miller, R. R., De Houwer, J., & Urushihara, K. (2006). Reasoning rats: forward blocking in Pavlovian animal conditioning is sensitive to constraints of causal inference. J Exp Psychol Gen, 135(1), 92–102.
Abstract: Forward blocking is one of the best-documented phenomena in Pavlovian animal conditioning. According to contemporary associative learning theories, forward blocking arises directly from the hardwired basic learning rules that govern the acquisition or expression of associations. Contrary to this view, here the authors demonstrate that blocking in rats is flexible and sensitive to constraints of causal inference, such as violation of additivity and ceiling considerations. This suggests that complex cognitive processes akin to causal inferential reasoning are involved in a well-established Pavlovian animal conditioning phenomenon commonly attributed to the operation of basic associative processes.
|
|
|
Blaisdell, A. P., & Cook, R. G. (2005). Integration of spatial maps in pigeons. Anim. Cogn., 8(1), 7–16.
Abstract: The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
|
|
|
Boughner, R. L., & Papini, M. R. (2006). Appetitive latent inhibition in rats: preexposure performance does not predict conditioned performance. Behav. Process., 72(1), 42–51.
Abstract: Nonreinforced preexposure to a conditioned stimulus impairs subsequent conditioning with that stimulus. The goal of these studies was to assess the extent to which acquisition performance could be predicted from preexposure performance using a correlational approach. For both preexposure and autoshaping, four measures of performance were computed, including overall average lever pressing, lever pressing in the initial session, percentage change in lever pressing, and slopes. These measures were correlated in a large sample of rats trained in an autoshaping situation. None of the three measures of autoshaping performance was consistently predicted by any of the three measures of preexposure performance. These results are consistent with the view that latent inhibition is not reducible to long-term habituation.
|
|
|
Cole, P. D., & Adamo, S. A. (2005). Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning. Anim. Cogn., 8(1), 27–30.
Abstract: Because most learning studies in cephalopods have been performed on octopods, it remains unclear whether such abilities are specific to octopus, or whether they correlate with having a larger and more centrally organized brain. To investigate associative learning in a different cephalopod, six sexually mature cuttlefish (Sepia officinalis) participated in a counterbalanced, within-subjects, appetitive, classical conditioning procedure. Two plastic spheres (conditioned stimuli, CSs), differing in brightness, were presented sequentially. Presentation of the CS+ was followed 5 s later by a live feeder fish (unconditioned stimulus, US). Cuttlefish began to attack the CS+ with the same type of food-acquisition seizures used to capture the feeder fish. After seven blocks of training (42 presentations of each CS) the difference in seizure probability between CS+ and CS- trials more than doubled; and was found to be significantly higher in late versus early blocks. These results indicate that cuttlefish exhibit autoshaping under some conditions. The possible ecological significance of this type of learning is briefly discussed.
|
|
|
Cook, M., Mineka, S., Wolkenstein, B., & Laitsch, K. (1985). Observational conditioning of snake fear in unrelated rhesus monkeys. J Abnorm Psychol, 94(4), 591–610.
|
|
|
Gazit, I., Goldblatt, A., & Terkel, J. (2005). The role of context specificity in learning: the effects of training context on explosives detection in dogs. Anim. Cogn., 8(3), 143–150.
Abstract: Various experiments revealed that if an animal learns a stimulus-response-reinforcer relationship in one context and is then tested in another context there is usually a lessening of stimulus control, and the same discriminative stimuli that reliably controlled the behavior in the first context will have less effect in the new context. This reduction in performance is known as the “context shift effect.” The effect of changing context on the probability of detecting explosives was investigated in seven highly trained explosives detection dogs (EDDs). In experiment 1 the dogs were trained alternately on path A, which always had five hidden explosives, and on a very similar path B, which never had any explosives. Within a few sessions the dogs showed a significant decrease in search behavior on path B, but not on path A. In experiment 2 the same dogs were trained only on path B with a target density of one explosive hidden every 4th day. The probability of the dogs now detecting the explosive was found to be significantly lower than in experiment 1. In experiment 3 the effect of the low target density as used in experiment 2 was investigated on a new but very similar path C. Both the detection probability for the one explosive every 4th day on the new path and the motivation to search were significantly higher than found in experiment 2. Finally, in experiment 4, an attempt was made to recondition the dogs to search on path B. Although trained for 12 daily sessions with one explosive hidden every session, the dogs failed to regain the normal levels of motivation they had shown on both new paths and on the paths that they knew usually contained explosives. The findings reveal that even a very intensively trained EDD will rapidly learn that a specific stretch of path does not contain explosives. The dog will then be less motivated to search and will miss newly placed targets. This learning is specific to the formerly always-clean path and is to some extent irreversible. However, the dog will search and detect normally on new paths even if they are very similar to the always-clean path. The data are discussed in terms of variables affecting renewal. The results suggest that following training designed to make a behavior “context independent,” any extinction training will not generalize beyond that specific context used during the extinction training. In addition, if the behavior is extinguished in a specific context, it will be very difficult to restore that behavior in that context. These conclusions should be considered by anyone attempting to extinguish well-established trans-context behaviors.
|
|
|
Lonon, A. M., & Zentall, T. R. (1999). Transfer of value from S+ to S- in simultaneous discriminations in humans. Am J Psychol, 112(1), 21–39.
Abstract: When animals learn a simultaneous discrimination, some of the value of the positive stimulus (S+) appears to transfer to the negative stimulus (S-). The present experiments demonstrate that such value transfer can also be found in humans. In Experiment 1 humans were trained on 2 simple simultaneous discriminations, the first between a highly positive stimulus, A (1,000 points); and a negative stimulus, B (0 points); and the second between a less positive stimulus, C (100 points); and a negative stimulus, D (0 points). On test trials, most participants preferred B over D. In Experiments 2 and 3 the value of the 2 original discriminations was equated in training (A[100]B[0] and C[100]D[0]). In Experiment 2 the values of the positive stimuli were then altered (A[1,000]C[0]); again, most participants preferred B over D. In Experiment 3, however, when the values of B and D were altered (B[1,000]D[0]), participants were indifferent to A and C. Thus, the mechanism that underlies value transfer in humans appears to be related to Pavlovian second-order conditioning. Similar mechanisms may be involved in assimilation processes in social contexts.
|
|
|
Manns, J. R., Clark, R. E., & Squire, L. R. (2002). Standard delay eyeblink classical conditioning is independent of awareness. J Exp Psychol Anim Behav Process, 28(1), 32–37.
Abstract: P. F. Lovibond and D. R. Shanks (2002) suggested that all forms of classical conditioning depend on awareness of the stimulus contingencies. This article considers the available data for eyeblink classical conditioning, including data from 2 studies (R. E. Clark, J. R. Manns, & L. R. Squire, 2001; J. R. Manns, R. E. Clark, & L. R. Squire, 2001) that were completed too recently to have been considered in their review. In addition, in response to questions raised by P. F. Lovibond and D. R. Shanks, 2 new analyses of data are presented from studies published previously. The available data from humans and experimental animals provide strong evidence that delay eyeblink classical conditioning (but not trace eyeblink classical conditioning) can be acquired and retained independently of the forebrain and independently of awareness. This conclusion applies to standard conditioning paradigms; for example, to single-cue delay conditioning when a tone is used as the conditioned stimulus (CS) and to differential delay conditioning when the positive and negative conditioned stimuli (CS+ and CS-) are a tone and white noise.
|
|
|
Shettleworth, S. J. (1972). Stimulus relevance in the control of drinking and conditioned fear responses in domestic chicks (Gallus gallus). J Comp Physiol Psychol, 80(2), 175–198.
|
|
|
Shettleworth, S. J. (1978). Reinforcement and the organization of behavior in golden hamsters: Pavlovian conditioning with food and shock unconditioned stimuli. J Exp Psychol Anim Behav Process, 4(2), 152–169.
Abstract: The effects of Pavlovian conditioned stimuli (CSs) for food or shock on a variety of behaviors of golden hamsters were observed in three experiments. The aim was to see whether previously reported differences among the behaviors produced by food reinforcement and punishment procedures could be accounted for by differential effects of Pavlovian conditioning on the behaviors. There was some correspondence between the behaviors observed to the CSs and the previously reported effects of instrumental training. However, the Pavlovian conditioned responses (CRs) alone would not have predicted the effects of instrumental training. Moreover, CRs depended to some extent on the context in which training and testing occurred. These findings, together with others in the literature, suggest that the results of Pavlovian conditioning procedures may not unambiguously predict what system of behaviors will be most readily modified by instrumental training with a given reinforcer.
|
|