|
Arluke, A. (2004). The use of dogs in medical and veterinary training: understanding and approaching student uneasiness. J Appl Anim Welf Sci, 7(3), 197–204.
|
|
|
Blaisdell, A. P., Sawa, K., Leising, K. J., & Waldmann, M. R. (2006). Causal reasoning in rats. Science, 311(5763), 1020–1022.
Abstract: Empirical research with nonhuman primates appears to support the view that causal reasoning is a key cognitive faculty that divides humans from animals. The claim is that animals approximate causal learning using associative processes. The present results cast doubt on that conclusion. Rats made causal inferences in a basic task that taps into core features of causal reasoning without requiring complex physical knowledge. They derived predictions of the outcomes of interventions after passive observational learning of different kinds of causal models. These competencies cannot be explained by current associative theories but are consistent with causal Bayes net theories.
|
|
|
Friederici, A. D., & Alter, K. (2004). Lateralization of auditory language functions: a dynamic dual pathway model. Brain Lang, 89(2), 267–276.
Abstract: Spoken language comprehension requires the coordination of different subprocesses in time. After the initial acoustic analysis the system has to extract segmental information such as phonemes, syntactic elements and lexical-semantic elements as well as suprasegmental information such as accentuation and intonational phrases, i.e., prosody. According to the dynamic dual pathway model of auditory language comprehension syntactic and semantic information are primarily processed in a left hemispheric temporo-frontal pathway including separate circuits for syntactic and semantic information whereas sentence level prosody is processed in a right hemispheric temporo-frontal pathway. The relative lateralization of these functions occurs as a result of stimulus properties and processing demands. The observed interaction between syntactic and prosodic information during auditory sentence comprehension is attributed to dynamic interactions between the two hemispheres.
|
|
|
Gácsi, M., Kara, E., Belényi, B., Topál, J., & Miklósi, Á. (2009). The effect of development and individual differences in pointing comprehension of dogs. Anim. Cogn., 12(3), 471–479.
Abstract: In spite of the rather different procedures actually used in comparative studies to test the ability of different species to rely on the human pointing gesture, there is no debate on the high performance of dogs in such tasks. Very little is known, however, on the course through which they acquire this ability or the probable factors influencing the process. Important developmental questions have remained unsolved and also some methodological concerns should be addressed before we can convincingly argue for one interpretation or another. In this study we tested 180 dogs of different age (from 2 months to adults) to investigate their performance in the human distal momentary pointing gesture. The results, analyzed at both the group and the individual levels, showed no difference in the performance according to age, indicating that in dogs the comprehension of the human pointing may require only very limited and rapid early learning to fully develop. Interestingly, neither the keeping conditions nor the time spent in active interaction with the owner, and not even some special (agility) training for using human visual cues, had significant effect on the success and explained individual differences. The performance of the dogs was rather stable over time: during the 20 trials within a session and even when subsamples of different age were repeatedly tested. Considering that in spite of the general success at the group level, more than half of the dogs were not successful at the individual level, we revealed alternative “decision-making rules” other than following the pointing gesture of the experimenter.
|
|
|
Huber, L., & Gajdon, G. K. (2006). Technical intelligence in animals: the kea model. Anim. Cogn., 9(4), 295–305.
Abstract: The ability to act on information flexibly is one of the cornerstones of intelligent behavior. As particularly informative example, tool-oriented behavior has been investigated to determine to which extent nonhuman animals understand means-end relations, object affordances, and have specific motor skills. Even planning with foresight, goal-directed problem solving and immediate causal inference have been a focus of research. However, these cognitive abilities may not be restricted to tool-using animals but may be found also in animals that show high levels of curiosity, object exploration and manipulation, and extractive foraging behavior. The kea, a New Zealand parrot, is a particularly good example. We here review findings from laboratory experiments and field observations of keas revealing surprising cognitive capacities in the physical domain. In an experiment with captive keas, the success rate of individuals that were allowed to observe a trained conspecific was significantly higher than that of naive control subjects due to their acquisition of some functional understanding of the task through observation. In a further experiment using the string-pulling task, a well-probed test for means-end comprehension, we found the keas finding an immediate solution that could not be improved upon in nine further trials. We interpreted their performance as insightful in the sense of being sensitive of the relevant functional properties of the task and thereby producing a new adaptive response without trial-and-error learning. Together, these findings contribute to the ongoing debate on the distribution of higher cognitive skills in the animal kingdom by showing high levels of sensorimotor intelligence in animals that do not use tools. In conclusion, we suggest that the 'Technical intelligence hypothesis' (Byrne, Machiavellian intelligence II: extensions and evaluations, pp 289-211, 1997), which has been proposed to explain the origin of the ape/monkey grade-shift in intelligence by a selection pressure upon an increased efficiency in foraging behavior, should be extended, that is, applied to some birds as well.
|
|
|
Hunt, G. R., Rutledge, R. B., & Gray, R. D. (2006). The right tool for the job: what strategies do wild New Caledonian crows use? Anim. Cogn., 9(4), 307–316.
Abstract: New Caledonian crows Corvus moneduloides (NC crows) display sophisticated tool manufacture in the wild, but the cognitive strategy underlying these skills is poorly understood. Here, we investigate what strategy two free-living NC crows used in response to a tool-length task. The crows manufactured tools to extract food from vertical holes of different depths. The first tools they made in visits were of a similar length regardless of the hole depth. The typical length was usually too short to extract food from the deep holes, which ruled out a strategy of immediate causal inference on the first attempt in a trial. When the first tool failed, the crows made second tools significantly longer than the unsuccessful first tools. There was no evidence that the crows made the lengths of first tools to directly match hole depth. We argue that NC crows may generally use a two-stage heuristic strategy to solve tool problems and that performance on the first attempt in a trial is not necessarily the 'gold standard' for assessing folk physics.
|
|
|
Lea, S. E. G., Goto, K., Osthaus, B., & Ryan, C. M. E. (2006). The logic of the stimulus. Anim. Cogn., 9(4), 247–256.
Abstract: This paper examines the contribution of stimulus processing to animal logics. In the classic functionalist S-O-R view of learning (and cognition), stimuli provide the raw material to which the organism applies its cognitive processes-its logic, which may be taxon-specific. Stimuli may contribute to the logic of the organism's response, and may do so in taxon-specific ways. Firstly, any non-trivial stimulus has an internal organization that may constrain or bias the way that the organism addresses it; since stimuli can only be defined relative to the organism's perceptual apparatus, and this apparatus is taxon-specific, such constraints or biases will often be taxon-specific. Secondly, the representation of a stimulus that the perceptual system builds, and the analysis it makes of this representation, may provide a model for the synthesis and analysis done at a more cognitive level. Such a model is plausible for evolutionary reasons: perceptual analysis was probably perfected before cognitive analysis in the evolutionary history of the vertebrates. Like stimulus-driven analysis, such perceptually modelled cognition may be taxon-specific because of the taxon-specificity of the perceptual apparatus. However, it may also be the case that different taxa are able to free themselves from the stimulus logic, and therefore apply a more abstract logic, to different extents. This thesis is defended with reference to two examples of cases where animals' cognitive logic seems to be isomorphic with perceptual logic, specifically in the case of pigeons' attention to global and local information in visual stimuli, and dogs' failure to comprehend means-end relationships in string-pulling tasks.
|
|
|
Pennisi, E. (2006). Animal cognition. Man's best friend(s) reveal the possible roots of social intelligence (Vol. 312).
|
|
|
Pennisi, E. (2006). Animal cognition. Social animals prove their smarts (Vol. 312).
|
|
|
Pepperberg, I. M. (2006). Grey parrot numerical competence: a review. Anim. Cogn., 9(4), 377–391.
Abstract: The extent to which humans and nonhumans share numerical competency is a matter of debate. Some researchers argue that nonhumans, lacking human language, possess only a simple understanding of small quantities, generally less than four. Animals that have, however, received some training in human communication systems might demonstrate abilities intermediate between those of untrained nonhumans and humans. Here I review data for a Grey parrot (Psittacus erithacus) that has been shown to quantify sets of up to and including six items (including heterogeneous subsets) using vocal English labels, to comprehend these labels fully, and to have a zero-like concept. Recent research demonstrates that he can also sum small quantities. His success shows that he understands number symbols as abstract representations of real-world collections, and that his sense of number compares favorably to that of chimpanzees and young human children.
|
|