|
de Waal, F. B. (1977). The organization of agonistic relations within two captive groups of Java-monkeys (Macaca fascicularis). Z. Tierpsychol., 44(3), 225–282.
Abstract: The paper offers a detailed quantitative descripition of the distribution of agonistic activities over the members of two groups of Java-monkeys (Macaca fascicularis). These groups lived in captivity and were well-established: i.e. they had an extensive network of genealogical relationships. The study pays special attention to agonistic interactions with three or more participants. Its main purpose is an analysis of the way dyadic agonistic relations (e.g. dominance relations) are affected by third group members and the relations among these. The paper presents data on the ontogeny of 'dependent dominance', the 'control role' of the alpha-male, and the functions of different types of alliances.
|
|
|
Dubois, F., & Giraldeau, L. - A. (2003). The forager's dilemma: food sharing and food defense as risk-sensitive foraging options. Am Nat, 162(6), 768–779.
Abstract: Although many variants of the hawk-dove game predict the frequency at which group foraging animals should compete aggressively, none of them can explain why a large number of group foraging animals share food clumps without any overt aggression. One reason for this shortcoming is that hawk-dove games typically consider only a single contest, while most group foraging situations involve opponents that interact repeatedly over discovered food clumps. The present iterated hawk-dove game predicts that in situations that are analogous to a prisoner's dilemma, animals should share the resources without aggression, provided that the number of simultaneously available food clumps is sufficiently large and the number of competitors is relatively small. However, given that the expected gain of an aggressive animal is more variable than the gain expected by nonaggressive individuals, the predicted effect of the number of food items in a clump-clump richness-depends on whether only the mean or both the mean and variability associated with payoffs are considered. More precisely, the deterministic game predicts that aggression should increase with clump richness, whereas the stochastic risk-sensitive game predicts that the frequency of encounters resulting in aggression should peak at intermediate clump richnesses or decrease with increasing clump richness if animals show sensitivity to the variance or coefficient of variation, respectively.
|
|
|
Harkins, J. D., Kamerling, S. G., & Church, G. (1992). Effect of competition on performance of thoroughbred racehorses. J Appl Physiol, 72(3), 836–841.
Abstract: The effect of competition and the influence of age and sex on performance were examined in a study of 18 Thoroughbred racehorses. The horses performed two solo and two competitive runs at 1,200 and 1,600 m for a total of eight runs. No group ran faster during competition, which may have been a reflection of the quality of horses used for this study and their susceptibility to stress-induced impairment of performance. Males showed no significant difference between competitive and solo run times, whereas females were consistently slower during competition. Males ran significantly faster than females in all runs. There was no difference in run times due to age, which may have been due to the high mean age (5.9 yr) of the group. The slower competitive run times may have occurred because of an earlier onset of fatigue when compared with solo runs. Plasma lactate was significantly greater for the 1,200-m competitive than for the solo runs.
|
|
|
Hemelrijk, C. K., & Wantia, J. (2005). Individual variation by self-organisation. Neurosci Biobehav Rev, 29(1), 125–136.
Abstract: In this paper, we show that differences in dominance and spatial centrality of individuals in a group may arise through self-organisation. Our instrument is a model, called DomWorld, that represents two traits that are often found in animals, namely grouping and competing. In this model individual differences grow under the following conditions: (1) when the intensity of aggression increases and grouping becomes denser, (2) when the degree of sexual dimorphism in fighting power increases. In this case the differences among females compared to males grow too, (3) when, upon encountering another individual, the tendency to attack is 'obligate' and not conditional, namely 'sensitive to risks'. Results resemble phenomena described for societies of primates, mice, birds and pigs.
|
|
|
Hirsch, B. T. (2007). Costs and benefits of within-group spatial position: a feeding competition model. Q Rev Biol, 82(1), 9–27.
Abstract: An animal's within-group spatial position has several important fitness consequences. Risk of predation, time spent engaging in antipredatory behavior and feeding competition can all vary with respect to spatial position. Previous research has found evidence that feeding rates are higher at the group edge in many species, but these studies have not represented the entire breadth of dietary diversity and ecological situations faced by many animals. In particular the presence of concentrated, defendable food patches can lead to increased feeding rates by dominants in the center of the group that are able to monopolize or defend these areas. To fully understand the tradeoffs of within-group spatial position in relation to a variety of factors, it is important to be able to predict where individuals should preferably position themselves in relation to feeding rates and food competition. A qualitative model is presented here to predict how food depletion time, abundance of food patches within a group, and the presence of prior knowledge of feeding sites affect the payoffs of different within-group spatial positions for dominant and subordinate animals. In general, when feeding on small abundant food items, individuals at the front edge of the group should have higher foraging success. When feeding on slowly depleted, rare food items, dominants will often have the highest feeding rates in the center of the group. Between these two extreme points of a continuum, an individual's optimal spatial position is predicted to be influenced by an additional combination of factors, such as group size, group spread, satiation rates, and the presence of producer-scrounger tactics.
|
|
|
Li, F. - H., Zhong, W. - Q., Wang, Z., & Wang, D. - H. (2007). Rank in a food competition test and humoral immune functions in male Brandt's voles (Lasiopodomys brandtii). Physiol. Behav., 90(2-3), 490–495.
Abstract: Social status can influence an animal's immune and reproductive functions, eventually leading to alterations in immunocompetence and reproductive success. Here, we report that rank assessed in a food competition test, considered as an index of social status, has significant influences on humoral immune functions in male Brandt's voles (Lasiopodomys brandtii) living in a group. Our data reveal a negative correlation of the spleen mass and serum antibody levels with social status, as well as a positive correlation of serum cortisol levels with social status. Males winning in food competition had a smaller spleen, a lower level of serum antibodies, and a higher level of serum cortisol than did their conspecific counterparts. These data indicate interactions between social status and humoral immune functions and might illustrate a trade-off between infection risks and reproductive success in male Brandt's voles.
|
|