|
Biro, D., Sumpter, D. J. T., Meade, J., & Guilford, T. (2006). From Compromise to Leadership in Pigeon Homing. Curr Biol, 16(21), 2123–2128.
Abstract: Summary A central problem faced by animals traveling in groups is how navigational decisions by group members are integrated, especially when members cannot assess which individuals are best informed or have conflicting information or interests , , , and . Pigeons are now known to recapitulate faithfully their individually distinct habitual routes home , and , and this provides a novel paradigm for investigating collective decisions during flight under varying levels of interindividual conflict. Using high-precision GPS tracking of pairs of pigeons, we found that if conflict between two birds' directional preferences was small, individuals averaged their routes, whereas if conflict rose over a critical threshold, either the pair split or one of the birds became the leader. Modeling such paired decision-making showed that both outcomes--compromise and leadership--could emerge from the same set of simple behavioral rules. Pairs also navigated more efficiently than did the individuals of which they were composed, even though leadership was not necessarily assumed by the more efficient bird. In the context of mass migration of birds and other animals, our results imply that simple self-organizing rules can produce behaviors that improve accuracy in decision-making and thus benefit individuals traveling in groups , and .
|
|
|
Blaisdell, A. P., & Cook, R. G. (2005). Integration of spatial maps in pigeons. Anim. Cogn., 8(1), 7–16.
Abstract: The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
|
|
|
Bouchard, J., Goodyer, W., & Lefebvre, L. (2007). Social learning and innovation are positively correlated in pigeons (Columba livia). Anim. Cogn., 10(2), 259–266.
Abstract: When animals show both frequent innovation and fast social learning, new behaviours can spread more rapidly through populations and potentially increase rates of natural selection and speciation, as proposed by A.C. Wilson in his behavioural drive hypothesis. Comparative work on primates suggests that more innovative species also show more social learning. In this study, we look at intra-specific variation in innovation and social learning in captive wild-caught pigeons. Performances on an innovative problem-solving task and a social learning task are positively correlated in 42 individuals. The correlation remains significant when the effects of neophobia on the two abilities are removed. Neither sex nor dominance rank are associated with performance on the two tasks. Free-flying flocks of urban pigeons are able to solve the innovative food-finding problem used on captive birds, demonstrating it is within the range of their natural capacities. Taken together with the comparative literature, the positive correlation between innovation and social learning suggests that the two abilities are not traded-off.
|
|
|
Dubois, F., Giraldeau, L. - A., Hamilton, I. M., Grant, J. W. A., & Lefebvre, L. (2004). Distraction sneakers decrease the expected level of aggression within groups: a game-theoretic model. Am Nat, 164(2), E32–45.
Abstract: Hawk-dove games have been extensively used to predict the conditions under which group-living animals should defend their resources against potential usurpers. Typically, game-theoretic models on aggression consider that resource defense may entail energetic and injury costs. However, intruders may also take advantage of owners who are busy fighting to sneak access to unguarded resources, imposing thereby an additional cost on the use of the escalated hawk strategy. In this article we modify the two-strategy hawk-dove game into a three-strategy hawk-dove-sneaker game that incorporates a distraction-sneaking tactic, allowing us to explore its consequences on the expected level of aggression within groups. Our model predicts a lower proportion of hawks and hence lower frequencies of aggressive interactions within groups than do previous two-strategy hawk-dove games. The extent to which distraction sneakers decrease the frequency of aggression within groups, however, depends on whether they search only for opportunities to join resources uncovered by other group members or for both unchallenged resources and opportunities to usurp.
|
|
|
Fremouw, T., Herbranson, W. T., & Shimp, C. P. (2002). Dynamic shifts of pigeon local/global attention. Anim. Cogn., 5(4), 233–243.
Abstract: It has previously been shown that pigeons can shift attention between parts and wholes of complex stimuli composed of larger, “global” characters constructed from smaller, “local” characters. The base-rate procedure used biased target level within any condition at either the local or global level; targets were more likely at one level than at the other. Biasing of target level in this manner demonstrated shifts of local/global attention over a time span consisting of several days with a fixed base rate. Experiment 1 examined the possibility that pigeons can shift attention between local and global levels of perceptual analysis in seconds rather than days. The experiment used priming cues the color of which predicted on a trial-by-trial basis targets at different perceptual levels. The results confirmed that pigeons, like humans, can display highly dynamic stimulus-driven shifts of local/global attention. Experiment 2 changed spatial relations between features of priming cues and features of targets within a task otherwise similar to that used in experiment 1. It was predicted that this change in cues might affect asymmetry but not the occurrence of a priming effect. A priming effect was again obtained, thereby providing generality to the claim that pigeons can learn that trial-by-trial primes predict targets at different levels of perceptual analysis. Pigeons can display perceptual, stimulus-driven priming of a highly dynamic nature.
|
|
|
Goto, K., Wills, A. J., & Lea, S. E. G. (2004). Global-feature classification can be acquired more rapidly than local-feature classification in both humans and pigeons. Anim. Cogn., 7(2), 109–113.
Abstract: When humans process visual stimuli, global information often takes precedence over local information. In contrast, some recent studies have pointed to a local precedence effect in both pigeons and nonhuman primates. In the experiment reported here, we compared the speed of acquisition of two different categorizations of the same four geometric figures. One categorization was on the basis of a local feature, the other on the basis of a readily apparent global feature. For both humans and pigeons, the global-feature categorization was acquired more rapidly. This result reinforces the conclusion that local information does not always take precedence over global information in nonhuman animals.
|
|
|
Petruso, E. J., Fuchs, T., & Bingman, V. P. (2007). Time-space learning in homing pigeons (Columba livia): orientation to an artificial light source. Anim. Cogn., 10(2), 181–188.
Abstract: Time-space learning reflects an ability to represent in memory event-stimulus properties together with the place and time of the event; a capacity well developed in birds. Homing pigeons were trained in an indoor octagonal arena to locate one food goal in the morning and a different food goal in the late afternoon. The goals differed with respect to their angular/directional relationship to an artificial light source located outside the arena. Further, the angular difference in reward position approximated the displacement of the sun's azimuth that would occur during the same time period. The experimental birds quickly learned the task, demonstrating the apparent ease with which birds can adopt an artificial light source to discriminate among alternative spatial responses at different times of the day. However, a novel midday probe session following successful learning revealed that the light source was interpreted as a stable landmark and not as a surrogate sun that would support compass orientation. Probe sessions following a phase shift of the light-dark cycle revealed that the mechanism employed to make the temporal discrimination was prevailingly based on an endogenous circadian rhythm and not an interval timing mechanism.
|
|
|
Terrace, H. S. (1987). Chunking by a pigeon in a serial learning task. Nature, 325(7000), 149–151.
Abstract: A basic principle of human memory is that lists that can be organized into memorable 'chunks' are easier to remember. Memory span is limited to a roughly constant number of chunks and is to a large extent independent of the amount of informaton contained in each chunk. Depending on the ingenuity of the code used to integrate discrete items into chunks, one can substantially increase the number of items that can be recalled correctly. Newly developed paradigms for studying memory in non-verbal organisms allow comparison of the abilities of human and non-human subjects to memorize lists. Here I present two types of evidence that pigeons 'chunk' 5-element lists whose components (colours and achromatic geometric forms) are clustered into distinct groups. Those lists were learned twice as rapidly as a homogeneous list of colours or heterogeneous lists in which the elements are not clustered. The pigeons were also tested for knowledge of the order of two elements drawn from the 5-element lists. They responded in the correct order only to those subsets that contained a chunk boundary. Thus chunking can be studied profitably in animal subjects; the cognitive processes that allow an organism to form chunks do no presuppose linguistic competence.
|
|
|
Watanabe, S., & Troje, N. F. (2006). Towards a “virtual pigeon”: a new technique for investigating avian social perception. Anim. Cogn., 9(4), 271–279.
Abstract: The purpose of the present study is to examine the applicability of a computer-generated, virtual animal to study animal cognition. Pigeons were trained to discriminate between movies of a real pigeon and a rat. Then, they were tested with movies of the computer-generated (CG) pigeon. Subjects showed generalization to the CG pigeon, however, they also responded to modified versions in which the CG pigeon was showing impossible movement, namely hopping and walking without its head bobbing. Hence, the pigeons did not attend to these particular details of the display. When they were trained to discriminate between the normal and the modified version of the CG pigeon, they were able to learn the discrimination. The results of an additional partial occlusion test suggest that the subjects used head movement as a cue for the usual vs. unusual CG pigeon discrimination.
|
|