|
Beran, M. J., Beran, M. M., Harris, E. H., & Washburn, D. A. (2005). Ordinal judgments and summation of nonvisible sets of food items by two chimpanzees and a rhesus macaque. J Exp Psychol Anim Behav Process, 31(3), 351–362.
Abstract: Two chimpanzees and a rhesus macaque rapidly learned the ordinal relations between 5 colors of containers (plastic eggs) when all containers of a given color contained a specific number of identical food items. All 3 animals also performed at high levels when comparing sets of containers with sets of visible food items. This indicates that the animals learned the approximate quantity of food items in containers of a given color. However, all animals failed in a summation task, in which a single container was compared with a set of 2 containers of a lesser individual quantity but a greater combined quantity. This difficulty was not overcome by sequential presentation of containers into opaque receptacles, but performance improved if the quantitative difference between sizes was very large.
|
|
|
Carroll, J., Murphy, C. J., Neitz, M., Hoeve, J. N., & Neitz, J. (2001). Photopigment basis for dichromatic color vision in the horse. J Vis, 1(2), 80–87.
Abstract: Horses, like other ungulates, are active in the day, at dusk, dawn, and night; and, they have eyes designed to have both high sensitivity for vision in dim light and good visual acuity under higher light levels (Walls, 1942). Typically, daytime activity is associated with the presence of multiple cone classes and color-vision capacity (Jacobs, 1993). Previous studies in other ungulates, such as pigs, goats, cows, sheep and deer, have shown that they have two spectrally different cone types, and hence, at least the photopigment basis for dichromatic color vision (Neitz & Jacobs, 1989; Jacobs, Deegan II, Neitz, Murphy, Miller, & Marchinton, 1994; Jacobs, Deegan II, & Neitz, 1998). Here, electroretinogram flicker photometry was used to measure the spectral sensitivities of the cones in the domestic horse (Equus caballus). Two distinct spectral mechanisms were identified and are consistent with the presence of a short-wavelength-sensitive (S) and a middle-to-long-wavelength-sensitive (M/L) cone. The spectral sensitivity of the S cone was estimated to have a peak of 428 nm, while the M/L cone had a peak of 539 nm. These two cone types would provide the basis for dichromatic color vision consistent with recent results from behavioral testing of horses (Macuda & Timney, 1999; Macuda & Timney, 2000; Timney & Macuda, 2001). The spectral peak of the M/L cone photopigment measured here, in vivo, is similar to that obtained when the gene was sequenced, cloned, and expressed in vitro (Yokoyama & Radlwimmer, 1999). Of the ungulates that have been studied to date, all have the photopigment basis for dichromatic color vision; however, they differ considerably from one another in the spectral tuning of their cone pigments. These differences may represent adaptations to the different visual requirements of different species.
|
|
|
Clement, T. S., & Zentall, T. R. (2003). Choice based on exclusion in pigeons. Psychon Bull Rev, 10(4), 959–964.
Abstract: When humans acquire a conditional discrimination and are given a novel-sample-comparison choice, they often reject a comparison known to be associated with a different sample and choose the alternative comparison by default (or by exclusion). In Experiment 1, we found that if, following matching training, we replaced both of the samples, acquisition took five times longer than if we replaced only one of the samples. Apparently, the opportunity to reject one of the comparisons facilitated the association of the other sample with the remaining comparison. In Experiment 2, we first trained pigeons to treat two samples differently (to associate Sample A with Comparison 1 and Sample B with Comparison 2) and then trained them to associate one of those samples with a new comparison (e.g., Sample A with Comparison 3) and to associate a novel sample (Sample C) with a different, new comparison (Comparison 4). When Sample B then replaced Sample C, the pigeons showed a significant tendency to choose Comparison 4 over Comparison 3. Thus, when given the opportunity, pigeons will choose by exclusion.
|
|
|
Clement, T. S., Weaver, J. E., Sherburne, L. M., & Zentall, T. R. (1998). Simultaneous discrimination learning in pigeons: value of S- affects the relative value of its associated S+. Q J Exp Psychol B, 51(4), 363–378.
Abstract: In a simple simultaneous discrimination involving a positive stimulus (S+) and a negative stimulus (S-), it has been hypothesized that positive value can transfer from the S+ to the S- (thus increasing the relative value of the S-) and also that negative value can transfer from the S- to the S+ (thus diminishing the relative value of the S+; Fersen, Wynne, Delius, & Staddon, 1991). Evidence for positive value transfer has been reported in pigeons (e.g. Zentall & Sherburne, 1994). The purpose of the present experiments was to determine, in a simultaneous discrimination, whether the S- diminishes the value of the S+ or the S- is contrasted with the S+ (thus enhancing the value of the S+). In two experiments, we found evidence for contrast, rather than value transfer, attributable to simultaneous discrimination training. Thus, not only does the S+ appear to enhance the value of the S-, but the S- appears to enhance rather than reduce the value of the S+.
|
|
|
Dunbar, K., & MacLeod, C. M. (1984). A horse race of a different color: Stroop interference patterns with transformed words. J Exp Psychol Hum Percept Perform, 10(5), 622–639.
Abstract: Four experiments investigated Stroop interference using geometrically transformed words. Over experiments, reading was made increasingly difficult by manipulating orientation uncertainty and the number of noncolor words. As a consequence, time to read color words aloud increased dramatically. Yet, even when reading a color word was considerably slower than naming the color of ink in which the word was printed, Stroop interference persisted virtually unaltered. This result is incompatible with the simple horse race model widely used to explain color-word interference. When reading became extremely slow, a reversed Stroop effect--interference in reading the word due to an incongruent ink color--appeared for one transformation together with the standard Stroop interference. Whether or not the concept of automaticity is invoked, relative speed of processing the word versus the color does not provide an adequate overall explanation of the Stroop phenomenon.
|
|
|
Hall, C. A., Cassaday, H. J., Vincent, C. J., & Derrington, A. M. (2006). Cone excitation ratios correlate with color discrimination performance in the horse (Equus caballus). J Comp Psychol, 120(4), 438–448.
Abstract: Six horses (Equus caballus) were trained to discriminate color from grays in a counterbalanced sequence in which lightness cues were irrelevant. Subsequently, the pretrained colors were presented in a different sequence. Two sets of novel colors paired with novel grays were also tested. Performance was just as good in these transfer tests. Once the horse had learned to select the chromatic from the achromatic stimulus, regardless of the specific color, they were immediately able to apply this rule to novel stimuli. In terms of the underlying visual mechanisms, the present study showed for the first time that the spectral sensitivity of horse cone photopigments, measured as cone excitation ratios, was correlated with color discrimination performance, measured as accuracy, repeated errors, and latency of approach.
|
|
|
Hampton, R. R., & Shettleworth, S. J. (1996). Hippocampal lesions impair memory for location but not color in passerine birds. Behav Neurosci, 110(4), 831–835.
Abstract: The effects of hippocampal complex lesions on memory for location and color were assessed in black-capped chickadees (Parus atricapillus) and dark-eyed juncos (Junco hyemalis) in operant tests of matching to sample. Before surgery, most birds were more accurate on tests of memory for location than on tests of memory for color. Damage to the hippocampal complex caused a decline in memory for location, whereas memory for color was not affected in the same birds. This dissociation indicates that the avian hippocampus plays an important role in spatial cognition and suggests that this brain structure may play no role in working memory generally.
|
|
|
Hanggi, E. B., Ingersoll, J. F., & Waggoner, T. L. (2007). Color vision in horses (Equus caballus): deficiencies identified using a pseudoisochromatic plate test. J. Comp. Psychol., 121(1), 65–72.
Abstract: In the past, equine color vision was tested with stimuli composed either of painted cards or photographic slides or through physiological testing using electroretinogram flicker photometry. Some studies produced similar results, but others did not, demonstrating that there was not yet a definitive answer regarding color vision in horses (Equus caballus). In this study, a pseudoisochromatic plate test--which is highly effective in testing color vision both in small children and in adult humans--was used for the first time on a nonhuman animal. Stimuli consisted of different colored dotted circles set against backgrounds of varying dots. The coloration of the circles corresponded to the visual capabilities of different types of color deficiencies (anomalous trichromacy and dichromacy). Four horses were tested on a 2-choice discrimination task. All horses successfully reached criterion for gray circles and demonstration circles. None of the horses were able to discriminate the protan-deutan plate or the individual protan or deutan plates. However, all were able to discriminate the tritan plate. The results suggest that horses are dichromats with color vision capabilities similar to those of humans with red-green color deficiencies.
|
|
|
Hogan, D. E., Zentall, T. R., & Pace, G. (1983). Control of pigeons' matching-to-sample performance by differential sample response requirements. Am J Psychol, 96(1), 37–49.
Abstract: Pigeons were trained on a matching-to-sample task in which sample hue and required sample-specific observing behavior provided redundant, relevant cues for correct choices. On trials that involved red and yellow hues as comparison stimuli, a fixed-ratio 16 schedule (FR 16) was required to illuminate the comparisons when the sample was red, and a differential-reinforcement-of-low-rates 3-sec schedule (DRL 3-sec) was required when the sample was yellow. On trials involving blue and green hues as comparison stimuli, an FR 16 schedule was required when the sample was blue and a DRL 3-sec schedule was required when the sample was green. For some pigeons, a 0-sec delay intervened between sample offset and comparison onset, whereas other pigeons experienced a random mixture of 0-sec and 2-sec delay trials. Test trial performance at 0-sec delay indicated that sample-specific behavior controlled choice performance considerably more than sample hue did. Test performance was independent of whether original training involved all 0-sec delay trials or a mixture of 0-sec and 2-sec delays. Sample-specific observing response requirements appear to facilitate pigeons' matching-to-sample performance by strengthening associations between the observing response and correct choice.
|
|
|
Ikeda, M., Patterson, K., Graham, K. S., Ralph, M. A. L., & Hodges, J. R. (2006). A horse of a different colour: do patients with semantic dementia recognise different versions of the same object as the same? Neuropsychologia, 44(4), 566–575.
Abstract: Ten patients with semantic dementia resulting from bilateral anterior temporal lobe atrophy, and 10 matched controls, were tested on an object recognition task in which they were invited to choose (from a four-item array) the picture representing “the same thing” as an object picture that they had just inspected and attempted to name. The target in the response array was never physically identical to the studied picture but differed from it – in the various conditions – in size, angle of view, colour or exemplar (e.g. a different breed of dog). In one test block for each patient, the response array was presented immediately after the studied picture was removed; in another block, a 2 min filled delay was inserted between study and test. The patients performed relatively well when the studied object and target response differed only in the size of the picture on the page, but were significantly impaired as a group in the other three type-of-change conditions, even with no delay between study and test. The five patients whose structural brain imaging revealed major right-temporal atrophy were more impaired overall, and also more affected by the 2 min delay, than the five patients with an asymmetric pattern characterised by predominant left-sided atrophy. These results are interpreted in terms of a hypothesis that successful classification of an object token as an object type is not a pre-semantic ability but rather results from interaction of perceptual and conceptual processing.
|
|