|
A. Lanata, A. Guidi, G. Valenza, P. Baragli, & E. P. Scilingo. (2016). Quantitative heartbeat coupling measures in human-horse interaction. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2696–2699). 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (E.
Abstract: Abstract— We present a study focused on a quantitative estimation of a human-horse dynamic interaction. A set of measures based on magnitude and phase coupling between heartbeat dynamics of both humans and horses in three different conditions is reported: no interaction, visual/olfactory interaction and grooming. Specifically, Magnitude Squared Coherence (MSC), Mean Phase Coherence (MPC) and Dynamic Time Warping (DTW) have been used as estimators of the amount of coupling between human and horse through the analysis of their heart rate variability (HRV) time series in a group of eleven human subjects, and one horse. The rationale behind this study is that the interaction of two complex biological systems go towards a coupling process whose dynamical evolution is modulated by the kind and time duration of the interaction itself. We achieved a congruent and consistent
statistical significant difference for all of the three indices. Moreover, a Nearest Mean Classifier was able to recognize the three classes of interaction with an accuracy greater than 70%. Although preliminary, these encouraging results allow a discrimination of three distinct phases in a real human-animal interaction opening to the characterization of the empirically proven relationship between human and horse.
|
|
|
Aust, U., & Huber, L. (2006). Picture-object recognition in pigeons: evidence of representational insight in a visual categorization task using a complementary information procedure. J Exp Psychol Anim Behav Process, 32(2), 190–195.
Abstract: Success in tasks requiring categorization of pictorial stimuli does not prove that a subject understands what the pictures stand for. The ability to achieve representational insight is by no means a trivial one because it exceeds mere detection of 2-D features present in both the pictorial images and their referents. So far, evidence for such an ability in nonhuman species is weak and inconclusive. Here, the authors report evidence of representational insight in pigeons. After being trained on pictures of incomplete human figures, the birds responded significantly more to pictures of the previously missing parts than to nonrepresentative stimuli, which demonstrates that they actually recognized the pictures' representational content.
|
|
|
Barros, A. T. (2001). Seasonality and relative abundance of Tabanidae (Diptera) captured on horses in the Pantanal, Brazil. Mem Inst Oswaldo Cruz, 96(7), 917–923.
Abstract: Once a month, from June 1992 to May 1993, collections of tabanids on horse were conducted in the Nhecolandia, Pantanal State of Mato Grosso do Sul, Brazil. Tabanid catches using hand nets were conducted from sunrise to sunset at grassland and cerradao (dense savanna) habitats. A total of 3,442 tabanids from 21 species,12 genera, and 3 subfamilies were collected. Although species abundance varied seasonally depending on habitat, no habitat specificity was observed for the most abundant species. In the grassland, 1,625 (47.2%) tabanids belonging to 19 species were collected, while 1,817 (52.8%) tabanids from 17 species were caught in the cerradao. The number of tabanid species varied from 7 during winter (July/August) to 15 in the spring (October). Tabanus importunus (56%) was the most abundant species, followed by T. occidentalis (8.2%), and T. claripennis (8.1%). The tabanid peak, in October, coincided with the beginning of the rainy season. The population peak of most species, including those with higher vector potential, suggests that the rainy season can be considered as the period of potentially higher risk of mechanical transmission of pathogens by tabanids to horses in the region.
|
|
|
Beerwerth, W., & Schurmann, J. (1969). [Contribution to the ecology of mycobacteria]. Zentralbl Bakteriol [Orig], 211(1), 58–69.
|
|
|
Benard, J., Stach, S., & Giurfa, M. (2006). Categorization of visual stimuli in the honeybee Apis mellifera. Anim. Cogn., 9(4), 257–270.
Abstract: Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.
|
|
|
Bertram, D. S. (1971). Mosquitoes of British Honduras, with some comments on malaria, and on arbovirus antibodies in man and equines. Trans R Soc Trop Med Hyg, 65(6), 742–762.
|
|
|
Bovet, D., Vauclair, J., & Blaye, A. (2005). Categorization and abstraction abilities in 3-year-old children: a comparison with monkey data. Anim. Cogn., 8(1), 53–59.
Abstract: Three-year-old children were tested on three categorization tasks of increasing levels of abstraction (used with adult baboons in an earlier study): the first was a conceptual categorization task (food vs toys), the second a perceptual matching task (same vs different objects), and the third a relational matching task in which the children had to sort pairs according to whether or not the two items belonged to the same or different categories. The children were tested using two different procedures, the first a replication of the procedure used with the baboons (pulling one rope for a category or a relationship between two objects, and another rope for the other category or relationship), the second a task based upon children's prior experiences with sorting objects (putting in the same box objects belonging to the same category or a pair of objects exemplifying the same relation). The children were able to solve the first task (conceptual categorization) when tested with the sorting into boxes procedure, and the second task (perceptual matching) when tested with both procedures. The children were able to master the third task (relational matching) only when the rules were clearly explained to them, but not when they could only watch sorting examples. In fact, the relational matching task without explanation requires analogy abilities that do not seem to be fully developed at 3 years of age. The discrepancies in performances between children tested with the two procedures, with the task explained or not, and the discrepancies observed between children and baboons are discussed in relation to differences between species and/or problem-solving strategies.
|
|
|
Branchi, I., Bichler, Z., Berger-Sweeney, J., & Ricceri, L. (2003). Animal models of mental retardation: from gene to cognitive function. Neurosci Biobehav Rev, 27(1-2), 141–153.
Abstract: About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
|
|
|
Call, J. (2006). Inferences by exclusion in the great apes: the effect of age and species. Anim. Cogn., 9(4), 393–403.
Abstract: This study investigated the ability of chimpanzees, gorillas, orangutans, and bonobos to make inferences by exclusion using the procedure pioneered by Premack and Premack (Cognition 50:347-362, 1994) with chimpanzees. Thirty apes were presented with two different food items (banana vs. grape) on a platform and covered with identical containers. One of the items was removed from the container and placed between the two containers so that subjects could see it. After discarding this item, subjects could select between the two containers. In Experiment 1, apes preferentially selected the container that held the item that the experimenter had not discarded, especially if subjects saw the experimenter remove the item from the container (but without seeing the container empty). Experiment 3 in which the food was removed from one of the containers behind a barrier confirmed these results. In contrast, subjects performed at chance levels when a stimulus (colored plastic chip: Exp. 1; food item: Exp. 2 and Exp. 3) designated the item that had been removed. These results indicated that apes made inferences, not just learned to use a discriminative cue to avoid the empty container. Apes perceived and treated the item discarded by the experimenter as if it were the very one that had been hidden under the container. Results suggested a positive relationship between age and inferential ability independent of memory ability but no species differences.
|
|
|
Clark, T. B., Peterson, B. V., Whitcomb, R. F., Henegar, R. B., Hackett, K. J., & Tully, J. G. (1984). Spiroplasmas in the Tabanidae. Isr J Med Sci, 20(10), 1002–1005.
Abstract: Spiroplasmas were observed in seven species of the family Tabanidae (horse flies and deer flies). This is the fifth family of the order Diptera now known to harbor spiroplasmas. Noncultivable spiroplasmas were seen in the hemolymph of three species of the genus Tabanus, and cultivable forms were isolated from the guts of six species in three genera. Isolates from T. calens and T. sulcifrons were serologically similar and closely related to a spiroplasma in the lampyrid beetle, Ellychnia corrusca. These three isolates represent a new serogroup. Isolates from Hybomitra lasiophthalma were related to Group IV strains, while those from T. nigrovittatus and Chrysops sp. both represented new serogroups. At least some tabanids probably acquire spiroplasmas from contaminated flower surfaces. The possibility of vertebrate reservoirs for some tabanid spiroplasmas remains an open question.
|
|