|
Blackmore, T. L., Foster, T. M., Sumpter, C. E., & Temple, W. (2008). An investigation of colour discrimination with horses (Equus caballus). Behav. Process., 78(3), 387–396.
Abstract: The ability of four horses (Equus caballus) to discriminate coloured (three shades of blue, green, red, and yellow) from grey (neutral density) stimuli, produced by back projected lighting filters, was investigated in a two response forced-choice procedure. Pushes of the lever in front of a coloured screen were occasionally reinforced, pushes of the lever in front of a grey screen were never reinforced. Each colour shade was randomly paired with a grey that was brighter, one that was dimmer, and one that approximately matched the colour in terms of brightness. Each horse experienced the colours in a different order, a new colour was started after 85% correct responses over five consecutive sessions or if accuracy showed no trend over sessions. All horses reached the 85% correct with blue versus grey, three horses did so with both yellow and green versus grey. All were above chance with red versus grey but none reached criterion. Further analysis showed the wavelengths of the green stimuli used overlapped with the yellow. The results are consistent with histological and behavioural studies that suggest that horses are dichromatic. They differ from some earlier data in that they indicate horses can discriminate yellow and blue, but that they may have deficiencies in discriminating red and green.
|
|
|
Macuda, T., & Timney, B. (1999). Luminance and chromatic discrimination in the horse (Equus caballus). Behav. Process., 44(3), 301–307.
Abstract: Equine colour vision was measured under conditions that minimised the possibility of animals using brightness cues to make chromatic discriminations. In a two-stage study, we first obtained luminance discrimination functions for achromatic targets then tested for chromatic discrimination over a range of target luminances. Horses were trained on a two-choice discrimination task. The positive stimulus was varied in luminance and/or colour using neutral density and broad band colour filters. The negative stimulus appeared as a uniform grey. In the brightness discrimination task, the horses performed well at large luminance differences but their percentage of correct responses declined to near chance levels at differences of less than 0.2 log units. In addition, a decrement in performance was noted at luminance differences of less than 0.2 log units for green and yellow chromatic discrimination functions, suggesting that horses cannot easily discriminate yellow and green from grey. However, the chromatic discrimination functions for red and blue showed that animals performed very well across the full range of target luminances. These results suggest that horses are at least dichromats.
|
|