|
Cheng, K., & Wignall, A. E. (2006). Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects. Anim. Cogn., 9(2), 141–150.
Abstract: Five experiments on honeybees examined how the learning of a second task interferes with what was previously learned. Free flying bees were tested for landmark-based memory in variations on a paradigm of retroactive interference. Bees first learned Task 1, were tested on Task 1 (Test 1), then learned Task 2, and were tested again on Task 1 (Test 2). A 60-min delay (waiting in a box) before Test 2 caused no performance decrements. If the two tasks had conflicting response requirements, (e.g., target right of a green landmark in Task 1 and left of a blue landmark in Task 2), then a strong decrement on Test 2 was found (retroactive interference effect). When response competition was minimised during training or testing, however, the decrement on Test 2 was small or nonexistent. The results implicate response competition as a major contributor to the retroactive interference effect. The honeybee seems to hold on to memories; new memories do not wipe out old ones.
|
|
|
Griffin, D. R. (2001). Animals know more than we used to think (Vol. 98).
|
|
|
Hampton, R. R. (2001). Rhesus monkeys know when they remember. Proc. Natl. Acad. Sci. U.S.A., 98(9), 5359–5362.
Abstract: Humans are consciously aware of some memories and can make verbal reports about these memories. Other memories cannot be brought to consciousness, even though they influence behavior. This conspicuous difference in access to memories is central in taxonomies of human memory systems but has been difficult to document in animal studies, suggesting that some forms of memory may be unique to humans. Here I show that rhesus macaque monkeys can report the presence or absence of memory. Although it is probably impossible to document subjective, conscious properties of memory in nonverbal animals, this result objectively demonstrates an important functional parallel with human conscious memory. Animals able to discern the presence and absence of memory should improve accuracy if allowed to decline memory tests when they have forgotten, and should decline tests most frequently when memory is attenuated experimentally. One of two monkeys examined unequivocally met these criteria under all test conditions, whereas the second monkey met them in all but one case. Probe tests were used to rule out “cueing” by a wide variety of environmental and behavioral stimuli, leaving detection of the absence of memory per se as the most likely mechanism underlying the monkeys' abilities to selectively decline memory tests when they had forgotten.
|
|
|
Nyman, S., & Dahlborn, K. (2001). Effect of water supply method and flow rate on drinking behavior and fluid balance in horses. Physiol. Behav., 73(1-2), 1–8.
Abstract: This study investigated three methods of water supply on drinking preference and behavior in six Standardbred geldings (2-9 years, 505+/-9 kg). The water sources were buckets (B), pressure valve (PV), and float valve (FV) bowls. In an initial drinking preference test, PV was tested at three flow rates: 3, 8, and 16 l/min (PV3, PV8, and PV16), and FV at 3 l/min (FV3). Water intake was measured in l and presented as the percentage of the total daily water intake from each of two simultaneously presented alternatives. The intake from PV8 was greater than from both PV3 (72+/-11% vs. 28+/-11%) and PV16 (90+/-4% vs. 10+/-4%). All horses showed a strong preference for B, 98+/-1% of the intake compared to 2+/-1% from PV8. Individual variation in the data gave no significant difference in preference between the two automatic bowls. In the second part of the study, drinking behavior and fluid balance were investigated when the horses drank from FV3, PV8, and B for 7 consecutive days in a changeover design. Despite a tendency for an increase in total daily drinking time from FV3, the daily water intake was significantly lower (43+/-3 ml/kg) than from PV8 (54+/-2 ml/kg) and B (58+/-3 ml/kg). Daily net water gain [intake-(fecal+urinary output)] was only 0.5+/-3 ml/kg with FV3, resulting in a negative fluid balance if insensible losses are included. These results show that the water supply method can affect both drinking behavior and fluid balance in the horse.
|
|