|
Amé, J. - M., Halloy, J., Rivault, C., Detrain, C., & Deneubourg, J. L. (2006). Collegial decision making based on social amplification leads to optimal group formation. Proc. Natl. Acad. Sci. U.S.A., 103(15), 5835–5840.
Abstract: Group-living animals are often faced with choosing between one or more alternative resource sites. A central question in such collective decision making includes determining which individuals induce the decision and when. This experimental and theoretical study of shelter selection by cockroach groups demonstrates that choices can emerge through nonlinear interaction dynamics between equal individuals without perfect knowledge or leadership. We identify a simple mechanism whereby a decision is taken on the move with limited information and signaling and without comparison of available opportunities. This mechanism leads to optimal mean benefit for group individuals. Our model points to a generic self-organized collective decision-making process independent of animal species.
|
|
|
Barth, J., Reaux, J. E., & Povinelli, D. J. (2005). Chimpanzees' (Pan troglodytes) use of gaze cues in object-choice tasks: different methods yield different results. Anim. Cogn., 8(2), 84–92.
Abstract: To assess the influence of different procedures on chimpanzees' performance in object-choice tasks, five adult chimpanzees were tested using three experimenter-given cues to food location: gazing, glancing, and pointing. These cues were delivered to the subjects in an identical fashion but were deployed within the context of two distinct meta-procedures that have been previously employed with this species with conflicting results. In one procedure, the subjects entered the test unit and approached the experimenter (who had already established the cue) on each trial. In the other procedure, the subjects stayed in the test unit throughout a session, witnessed the hiding procedure, and waited for a delay of 10 s during which the cue was provided. The subjects scored at high levels far exceeding chance in response to the gaze cue only when they approached the experimenter for each trial. They performed at chance levels when they stayed inside the test unit throughout the session. They scored at chance levels on all other cues irrespective of the procedure. These findings imply that (a) chimpanzees can immediately exploit social gaze cues, and (b) previous conflicting findings were likely due to the different meta-procedures that were used.
|
|
|
Boysen, S. T., & Berntson, G. G. (1995). Responses to quantity: perceptual versus cognitive mechanisms in chimpanzees (Pan troglodytes). J Exp Psychol Anim Behav Process, 21(1), 82–86.
Abstract: Two chimpanzees were trained to select among 2 different amounts of candy (1-6 items). The task was designed so that selection of either array by the active (selector) chimpanzee resulted in that array being given to the passive (observer) animal, with the remaining (nonselected) array going to the selector. Neither animal was able to select consistently the smaller array, which would reap the larger reward. Rather, both animals preferentially selected the larger array, thereby receiving the smaller number of reinforcers. When Arabic numerals were substituted for the food arrays, however, the selector animal evidenced more optimal performance, immediately selecting the smaller numeral and thus receiving the larger reward. These findings suggest that a basic predisposition to respond to the perceptual-motivational features of incentive stimuli can interfere with task performance and that this interference can be overridden when abstract symbols serve as choice stimuli.
|
|
|
Brosnan, S. F., & De Waal, F. B. M. (2003). Monkeys reject unequal pay. Nature, 425(6955), 297–299.
Abstract: During the evolution of cooperation it may have become critical for individuals to compare their own efforts and pay-offs with those of others. Negative reactions may occur when expectations are violated. One theory proposes that aversion to inequity can explain human cooperation within the bounds of the rational choice model, and may in fact be more inclusive than previous explanations. Although there exists substantial cultural variation in its particulars, this 'sense of fairness' is probably a human universal that has been shown to prevail in a wide variety of circumstances. However, we are not the only cooperative animals, hence inequity aversion may not be uniquely human. Many highly cooperative nonhuman species seem guided by a set of expectations about the outcome of cooperation and the division of resources. Here we demonstrate that a nonhuman primate, the brown capuchin monkey (Cebus apella), responds negatively to unequal reward distribution in exchanges with a human experimenter. Monkeys refused to participate if they witnessed a conspecific obtain a more attractive reward for equal effort, an effect amplified if the partner received such a reward without any effort at all. These reactions support an early evolutionary origin of inequity aversion.
|
|
|
Brosnan, S. F., & de Waal, F. B. M. (2004). A concept of value during experimental exchange in brown capuchin monkeys, Cebus apella. Folia Primatol (Basel), 75(5), 317–330.
Abstract: We evaluated the response of brown capuchin monkeys to two differentially valued tokens in an experimental exchange situation akin to a simple barter. Monkeys were given a series of three tests to evaluate their ability to associate tokens with food, then their responses were examined in a barter situation in which tokens were either limited or unlimited. Capuchins did not perform barter in the typical sense, returning the tokens which were associated with the reward. However, females, but not males, showed a different response, preferring the higher-value token. This may indicate that they learned to prefer one token over the other rather than to associate the tokens with their specific rewards. This sex difference parallels previous findings of greater reciprocity in female brown capuchins than in males.
|
|
|
Brosnan, S. F., & de Waal, F. B. M. (2004). Socially learned preferences for differentially rewarded tokens in the brown capuchin monkey (Cebus apella). J Comp Psychol, 118(2), 133–139.
Abstract: Social learning is assumed to underlie traditions, yet evidence indicating social learning in capuchin monkeys (Cebus apella), which exhibit traditions, is sparse. The authors tested capuchins for their ability to learn the value of novel tokens using a previously familiar token-exchange economy. Capuchins change their preferences in favor of a token worth a high-value food reward after watching a conspecific model exchange 2 differentially rewarded tokens, yet they fail to develop a similar preference after watching tokens paired with foods in the absence of a conspecific model. They also fail to learn that the value of familiar tokens has changed. Information about token value is available in all situations, but capuchins seem to pay more attention in a social situation involving novel tokens.
|
|
|
Brosnan, S. F., & de Waal, F. B. M. (2005). Responses to a simple barter task in chimpanzees, Pan troglodytes. Primates, 46(3), 173–182.
Abstract: Chimpanzees (Pan troglodytes) frequently participate in social exchange involving multiple goods and services of variable value, yet they have not been tested in a formalized situation to see whether they can barter using multiple tokens and rewards. We set up a simple barter economy with two tokens and two associated rewards and tested chimpanzees on their ability to obtain rewards by returning the matching token in situations in which their access to tokens was unlimited or limited. Chimpanzees easily learned to associate value with the tokens, as expected, and did barter, but followed a simple strategy of favoring the higher-value token, regardless of the reward proffered, instead of a more complex but more effective strategy of returning the token that matched the reward. This response is similar to that shown by capuchin monkeys in our previous study. We speculate that this response, while not ideal, may be sufficient to allow for stability of the social exchange system in these primates, and that the importance of social barter to both species may have led to this convergence of strategies.
|
|
|
Bryson, J., & Leong, J. (2007). Primate errors in transitive inference: a two-tier learning model. Anim. Cogn., 10(1), 1–15.
Abstract: Abstract Transitive performance (TP) is a learning-based behaviour exhibited by a wide range of species, where if a subject has been taught to prefer A when presented with the pair AB but to prefer B when presented with the pair BC, then the subject will also prefer A when presented with the novel pair AC. Most explanations of TP assume that subjects recognize and learn an underlying sequence from observing the training pairs. However, data from squirrel monkeys (Saimiri sciureus) and young children contradict this, showing that when three different items (a triad) are drawn from the sequence, subjects`` performance degrades systematically (McGonigle and Chalmers, Nature 267:694-696, 1977; Chalmers and McGonigle, Journal of Experimental Child Psychology 37:355-377, 1984; Harris and McGonigle, The Quarterly Journal of Experimental Psychology 47B:319-348, 1994). We present here the two-tier model, the first learning model of TP which accounts for this systematic performance degradation. Our model assumes primate TP is based on a general-purpose task learning system rather than a special-purpose sequence-learning system. It supports the hypothesis of Heckers et al. (Hippocampus 14:153-162, 2004) that TP is an expression of two separate general learning elements: one for associating actions and contexts, another for prioritising associations when more than one context is present. The two-tier model also provides explanations for why phased training is important for helping subjects learn the initial training pairs and why some subjects fail to do so. It also supports the Harris and McGonigle (The Quarterly Journal of Experimental Psychology 47B:319-348, 1994) explanation of why, once the training pairs have been acquired, subjects perform transitive choice automatically on two-item diads, but not when exposed to triads from the same sequence.
|
|
|
Cerutti, D. T., & Staddon, J. E. R. (2004). Immediacy versus anticipated delay in the time-left experiment: a test of the cognitive hypothesis. J Exp Psychol Anim Behav Process, 30(1), 45–57.
Abstract: In the time-left experiment (J. Gibbon & R. M. Church, 1981), animals are said to compare an expectation of a fixed delay to food, for one choice, with a decreasing delay expectation for the other, mentally representing both upcoming time to food and the difference between current time and upcoming time (the cognitive hypothesis). The results of 2 experiments support a simpler view: that animals choose according to the immediacies of reinforcement for each response at a time signaled by available time markers (the temporal control hypothesis). It is not necessary to assume that animals can either represent or subtract representations of times to food to explain the results of the time-left experiment.
|
|
|
Chapelain, A., & Blois-Heulin, C. (2009). Lateralization for visual processes: eye preference in Campbell"s monkeys ( Cercopithecus c. campbelli ). Anim. Cogn., 12(1), 11–19.
Abstract: Abstract: Brain lateralization has been the matter of extensive research over the last centuries, but it remains an unsolved issue. While hand preferences have been extensively studied, very few studies have investigated laterality of eye use in non-human primates. We examined eye preference in 14 Campbell"s monkeys (Cercopithecus c. campbelli). We assessed eye preference to look at a seed placed inside a tube using monocular vision. Eye use was recorded for 100 independent and non-rewarded trials per individual. All of the 14 monkeys showed very strong preferences in the choice of the eye used to look inside the tube (mean preference: 97.6%). Eight subjects preferred the right eye and six subjects preferred the left eye. The results are discussed in light of previous data on eye preference in primates, and compared to data on hand preference from these subjects. Our findings would support the hypothesis for an early emergence of lateralization for perceptual processes compared to manual motor functions.
|
|