|
Barker, S. C. (2003). The Australian paralysis tick may be the missing link in the transmission of Hendra virus from bats to horses to humans. Med Hypotheses, 60(4), 481–483.
Abstract: Hendra virus is a new virus of the family Paramyxoviridae. This virus was first detected in Queensland, Australia, in 1994; although, it seems that the virus has infected fruit-eating bats (flying-foxes) for a very long time. At least 2 humans and 15 horses have been killed by this virus since it first emerged as a virus that may infect mammals other than flying-foxes. Hendra virus is thought to have moved from flying-foxes to horses, and then from horses to people. There is a reasonably strong hypothesis for horse-to-human transmission: transmission of virus via nasal discharge, saliva and/or urine. In contrast, there is no strong hypothesis for flying-fox-to-human transmission. I present evidence that the Australian paralysis tick, Ixodes holocyclus, which has apparently only recently become a parasite of flying-foxes, may transmit Hendra virus and perhaps related viruses from flying-foxes to horses and other mammals.
|
|
|
Fenton, B., & Ratcliffe, J. (2004). Animal behaviour: eavesdropping on bats. Nature, 429(6992), 612–613.
|
|
|
Ratcliffe, J. M., Fenton, M. B., & Shettleworth, S. J. (2006). Behavioral flexibility positively correlated with relative brain volume in predatory bats. Brain Behav Evol, 67(3), 165–176.
Abstract: We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.
|
|
|
Scherer, W. F., & Dickerman, R. W. (1972). Ecologic studies of Venezuelan encephalitis virus in southeastern Mexico. 8. Correlations and conclusions. Am J Trop Med Hyg, 21(2), 86–89.
|
|