|
Fulhorst, C. F., Hardy, J. L., Eldridge, B. F., Chiles, R. E., & Reeves, W. C. (1996). Ecology of Jamestown Canyon virus (Bunyaviridae: California serogroup) in coastal California. Am J Trop Med Hyg, 55(2), 185–189.
Abstract: This paper reports the first isolation of Jamestown Canyon (JC) virus from coastal California and the results of tests for antibody to JC virus in mammals living in coastal California. The virus isolation was made from a pool of 50 Aedes dorsalis females collected as adults from Morro Bay, San Luis Obispo County, California. The virus isolate was identified by two-way plaque reduction-serum dilution neutralization tests done in Vero cell cultures. Sera from the mammals were tested for antibody to JC virus by a plaque-reduction serum dilution neutralization method. A high prevalence of JC virus-specific antibody was found in horses and cattle sampled from Morro Bay. This finding is additional evidence for the presence of a virus antigenically identical or closely related to JC virus in Morro Bay and indicates that the vectors of the virus in Morro Bay feed on large mammals. A high prevalence of virus-specific antibody was also found in horses sampled from Marin and San Diego counties. This finding suggests that viruses antigenically identical or closely related to JC virus are geographically widespread in coastal California.
|
|
|
Giangaspero, A., Traversa, D., & Otranto, D. (2004). [Ecology of Thelazia spp. in cattle and their vectors in Italy]. Parassitologia, 46(1-2), 257–259.
Abstract: The genus Thelazia (Spirurida, Thelaziidae) includes a cosmopolitan group of eyeworm spirurids responsible for ocular infections in domestic and wild animals and transmitted by different species of muscids. Bovine thelaziosis is caused by Thelazia rhodesi Desmarest 1828, Thelazia gulosa Railliet & Henry 1910, and Thelazia skrjabini Erschow 1928, which occur in many countries; T. gulosa and T. skrjabini have been reported mainly in the New World, while T. rhodesi is particularly common in the Old World. In Italy, T. rhodesi was reported in southern regions a long time ago and, recently, T. gulosa and T. skrjabini have been identified in autochthonous cattle first in Apulia and then in Sardinia. Thirteen species of Musca are listed as intermediate hosts of eyeworms, but only Musca autumnalis and Musca larvipara have been demonstrated to act as vectors of Thelazia in the ex-URSS, North America, ex-Czechoslovakia and more recently in Sweden. In Italy, after the reports of T. gulosa and T. skrjabini in southern regions, the intermediate hosts of bovine eyeworms were initially only suspected as the predominant secretophagous Muscidae collected from the periocular region of cattle with thelaziosis were the face flies, M. autumnalis and M. larvipara, followed by Musca osiris, Musca tempestiva and Musca domestica. The well-known constraints in the identification of immature eyeworms to species by fly dissection and also the time-consuming techniques used constitute important obstacles to epidemiological field studies (i.e. vector identification and/or role, prevalence and pattern of infection in flies, etc.). Molecular studies have recently permitted to further investigations into this area. A PCR-RFLP analysis of the ribosomal ITS-1 sequence was developed to differentiate the 3 species of Thelazia (i.e. T. gulosa, T. rhodesi and T. skrjabini) found in Italy, then a molecular epidemiological survey has recently been carried out in field conditions throughout five seasons of fly activity and has identified the role of M. autumnalis, M. larvipara, M. osiris and M. domestica as vectors of T. gulosa and of M. autumnalis and M. larvipara of T. rhodesi. Moreover, M. osiris was described, for the first time, to act as a vector of T. gulosa and M. larvipara of T. gulosa and T. rhodesi. The mean prevalence in the fly population examined was found to be 2.86%. The molecular techniques have opened new perspectives for further research on the ecology and epidemiology not only of Thelazia in cattle but also of other autochthonous species of Thelazia which have been also recorded in Italy, such as Thelazia callipaeda, which is responsible for human and canid ocular infection and Thelazia lacrymalis, the horse eyeworm whose epidemiological molecular studies are in progress.
|
|
|
Hazem, A. S. (1978). [Collective review: Salmonella paratyphi in animals and in the environment]. Dtsch Tierarztl Wochenschr, 85(7), 296–303.
|
|
|
Pitchford, R. J., Visser, P. S., du Toit, J. F., de Pienaar, U. V., & Young, E. (1973). Observations on the ecology of Schistosoma mattheei Veglia & Le Roux, 1929, in portion of the Kruger National Park and surrounding area using a new quantitative technique for egg output. J S Afr Vet Assoc, 44(4), 405–420.
|
|
|
Valova, G. P., & Mefod'ev, V. V. (1972). [Specific features of an epidemic process in leptospiroses in northern conditions in Western Siberia]. Zh Mikrobiol Epidemiol Immunobiol, 49(11), 138–145.
|
|