|
Dyer, F. C. (2002). Animal behaviour: when it pays to waggle (Vol. 419).
|
|
|
Fulhorst, C. F., Hardy, J. L., Eldridge, B. F., Chiles, R. E., & Reeves, W. C. (1996). Ecology of Jamestown Canyon virus (Bunyaviridae: California serogroup) in coastal California. Am J Trop Med Hyg, 55(2), 185–189.
Abstract: This paper reports the first isolation of Jamestown Canyon (JC) virus from coastal California and the results of tests for antibody to JC virus in mammals living in coastal California. The virus isolation was made from a pool of 50 Aedes dorsalis females collected as adults from Morro Bay, San Luis Obispo County, California. The virus isolate was identified by two-way plaque reduction-serum dilution neutralization tests done in Vero cell cultures. Sera from the mammals were tested for antibody to JC virus by a plaque-reduction serum dilution neutralization method. A high prevalence of JC virus-specific antibody was found in horses and cattle sampled from Morro Bay. This finding is additional evidence for the presence of a virus antigenically identical or closely related to JC virus in Morro Bay and indicates that the vectors of the virus in Morro Bay feed on large mammals. A high prevalence of virus-specific antibody was also found in horses sampled from Marin and San Diego counties. This finding suggests that viruses antigenically identical or closely related to JC virus are geographically widespread in coastal California.
|
|
|
Hardy, J. L. (1987). The ecology of western equine encephalomyelitis virus in the Central Valley of California, 1945-1985. Am J Trop Med Hyg, 37(3 Suppl), 18s–32s.
Abstract: Reeves' concept of the summer transmission cycle of western equine encephalomyelitis virus in 1945 was that the virus was amplified in a silent transmission cycle involving mosquitoes, domestic chickens, and possibly wild birds, from which it could be transmitted tangentially to and cause disease in human and equine populations. Extensive field and laboratory studies done since 1945 in the Central Valley of California have more clearly defined the specific invertebrate and vertebrate hosts involved in the basic virus transmission cycle, but the overall concept remains unchanged. The basic transmission cycle involves Culex tarsalis as the primary vector mosquito species and house finches and house sparrows as the primary amplifying hosts. Secondary amplifying hosts, upon which Cx. tarsalis frequently feeds, include other passerine species, chickens, and possibly pheasants in areas where they are abundant. Another transmission cycle that most likely is initiated from the Cx. tarsalis-wild bird cycle involves Aedes melanimon and the blacktail jackrabbit. Like humans and horses, California ground squirrels, western tree squirrels, and a few other wild mammal species become infected tangentially with the virus but do not contribute significantly to virus amplification.
|
|
|
McHugh, C. P. (1989). Ecology of a semi-isolated population of adult Anopheles freeborni: abundance, trophic status, parity, survivorship, gonotrophic cycle length, and host selection. Am J Trop Med Hyg, 41(2), 169–176.
Abstract: A population of adult Anopheles freeborni near Sheridan, CA was sampled daily during 13 August-7 September 1984. Data on abundance, trophic status, and gonotrophic age were recorded. Abundance and gonotrophic age data were analyzed to estimate daily survivorship and gonotrophic cycle length. Daily survivorship for unfed mosquitoes was estimated to be 0.72 with a gonotrophic cycle of 6 days duration. Daily survivorship for bloodfed mosquitoes was estimated to be 0.74 with a gonotrophic cycle of 4 days. The 2 day difference in gonotrophic cycles between unfed and bloodfed mosquitoes was the result of the period required for maturation and mating of teneral females. In 1986, an incage release of field-collected females estimated survivorship at 0.75 per day. Precipitin tests of 1,338 blood-engorged mosquito abdomens indicated that bovids, horses, rabbits, and canids comprised 92% of bloodmeals; no bloodmeals of human origin were detected.
|
|
|
Nelson, D. M., Gardner, I. A., Chiles, R. F., Balasuriya, U. B., Eldridge, B. F., Scott, T. W., et al. (2004). Prevalence of antibodies against Saint Louis encephalitis and Jamestown Canyon viruses in California horses. Comp Immunol Microbiol Infect Dis, 27(3), 209–215.
Abstract: Jamestown Canyon (JC) and Saint Louis encephalitis (SLE) viruses are mosquito-transmitted viruses that have long been present in California. The objective of this study was to determine the seroprevalence of these two viruses in horses prior to the introduction of West Nile (WN) virus. Approximately 15% of serum samples collected in 1998 from 425 horses on 44 equine operations horses throughout California had serum antibodies to JC virus, whereas antibodies were not detected to SLE virus. The results indicate that horses in California were commonly infected prior to 1998 with mosquito-transmitted Bunyaviruses that are identical or closely related to JC virus, but not with SLE virus. The different seroprevalence of SLE and JC viruses in horses likely reflects the unique ecology of each virus, and it is predicted that WN virus will have a wider distribution in California than closely related SLE virus.
|
|
|
Walker, M. L., & Becklund, W. W. (1971). Occurrence of a cattle eyeworm, Thelazia gulosa (Nematoda: Thelaziidae), in an imported giraffe in California and T. lacrymalis in a native horse in Maryland. J Parasitol, 57(6), 1362–1363.
|
|
|
Washino, R. K., & Tempelis, C. H. (1967). Host-feeding patterns of Anopheles freeborni in the Sacramento Valley, California. J Med Entomol, 4(3), 311–314.
|
|