|
Bode, N. W. F., Wood, A. J., & Franks, D. W. (2011). The impact of social networks on animal collective motion. Anim. Behav., 82(1), 29–38.
Abstract: Many group-living animals show social preferences for relatives, familiar conspecifics or individuals of similar attributes such as size, personality or sex. How such preferences could affect the collective motion of animal groups has been rather unexplored. We present a general model of collective animal motion that includes social connections as preferential reactions between individuals. Our conceptual examples illustrate the possible impact of underlying social networks on the collective motion of animals. Our approach shows that the structure of these networks could influence: (1) the cohesion of groups; (2) the spatial position of individuals within groups; and (3) the hierarchical dynamics within such groups. We argue that the position of individuals within a social network and the social network structure of populations could have important fitness implications for individual animals. Counterintuitive results from our conceptual examples show that social structures can result in unexpected group dynamics. This sharpens our understanding of the way in which collective movement can be interpreted as a result of social interactions.
|
|
|
Conradt, L., & Roper, T. J. (2010). Deciding group movements: Where and when to go. Behav. Process., 84(3), 675–677.
Abstract: A group of animals can only move cohesively, if group members “somehow” reach a consensus about the timing (e.g., start) and the spatial direction/destination of the collective movement. Timing and spatial decisions usually differ with respect to the continuity of their cost/benefit distribution in such a way that, in principle, compromises are much more feasible in timing decision (e.g. median preferred time) than they are in spatial decisions. The consequence is that consensus costs connected to collective timing decisions are usually less skewed amongst group members than are consensus costs connected to spatial decisions. This, in turn, influences the evolution of decision sharing: sharing in timing decisions is most likely to evolve when conflicts are high relative to group cohesion benefits, while sharing in spatial decisions is most likely to evolve in the opposite situation. We discuss the implications of these differences for the study of collective movement decisions.
|
|
|
Conradt, L., Krause, J., Couzin, I. D., & Roper, T. J. (2009). “Leading According to Need” in Self-Organizing Groups. Am Nat, 173(3), 304–312.
Abstract: Self‐organizing‐system approaches have shed significant light on the mechanisms underlying synchronized movements by large groups of animals, such as shoals of fish, flocks of birds, or herds of ungulates. However, these approaches rarely consider conflicts of interest between group members, although there is reason to suppose that such conflicts are commonplace. Here, we demonstrate that, where conflicts exist, individual members of self‐organizing groups can, in principle, increase their influence on group movement destination by strategically changing simple behavioral parameters (namely, movement speed, assertiveness, and social attraction range). However, they do so at the expense of an increased risk of group fragmentation and a decrease in movement efficiency. We argue that the resulting trade‐offs faced by each group member render it likely that group movements are led by those members for which reaching a particular destination is most crucial or group cohesion is least important. We term this phenomenon leading according to “need” or “social indifference,” respectively. Both kinds of leading can occur in the absence of knowledge of or communication about the needs of other group members and without the assumption of altruistic cooperation. We discuss our findings in the light of observations on fish and other vertebrates.
|
|
|
Dyer, J. R. G., Johansson, A., Helbing, D., Couzin, I. D., & Krause, J. (2009). Leadership, consensus decision making and collective behaviour in humans. Phil. Trans. Biol. Sci., 364(1518), 781–789.
Abstract: This paper reviews the literature on leadership in vertebrate groups, including recent work on human groups, before presenting the results of three new experiments looking at leadership and decision making in small and large human groups. In experiment 1, we find that both group size and the presence of uninformed individuals can affect the speed with which small human groups (eight people) decide between two opposing directional preferences and the likelihood of the group splitting. In experiment 2, we show that the spatial positioning of informed individuals within small human groups (10 people) can affect the speed and accuracy of group motion. We find that having a mixture of leaders positioned in the centre and on the edge of a group increases the speed and accuracy with which the group reaches their target. In experiment 3, we use large human crowds (100 and 200 people) to demonstrate that the trends observed from earlier work using small human groups can be applied to larger crowds. We find that only a small minority of informed individuals is needed to guide a large uninformed group. These studies build upon important theoretical and empirical work on leadership and decision making in animal groups.
|
|
|
Faria, J. J., Dyer, J. R. G., Tosh, C. R., & Krause, J. (2010). Leadership and social information use in human crowds. Anim. Behav., 79(4), 895–901.
Abstract: One of the big challenges for group-living animals is to find out who in a group has pertinent information (regarding food or predators) at any moment in time, because informed individuals may not be obviously recognizable to other group members. We found that individuals in human groups were capable of identifying those with information, and this identification increased group performance: the speed and accuracy of groups in reaching a target. Using video analysis we found how informed individuals might have been identified by other group members by means of inadvertent social cues (such as starting order, time spent following and group position). Furthermore, we were able to show that at least one of these cues, the group position of informed individuals, was indeed correlated with group performance. Our final experiment confirmed that leadership was even more efficient when the group members were given the identity of the leader. We discuss the effect of information status regarding the presence and identity of leaders on collective animal behaviour.
|
|
|
Fischhoff, I. R., Sundaresan, S. R., Cordingley, J., Larkin, H. M., Sellier, M. - J., & Rubenstein, D. I. (2007). Social relationships and reproductive state influence leadership roles in movements of plains zebra, Equus burchellii. Anim. Behav., 73(5), 825–831.
Abstract: In animal groups, collective movements emerge from individual interactions. Biologists seek to identify how characteristics of actors in these groups, and their relationships, influence the decision-making process. We distinguished two basic factors determining leadership in group choices: identity and state. We hypothesized that identity is more important to leadership in groups with stable relationships, which permit the development of habitual roles. In groups with fluid membership, particular individuals or subgroups are less likely to emerge as consistent leaders. Instead, we predicted that movement initiation in unstable groups depends on individual state at the time of the decision. We characterized how identity and reproductive state influenced leadership patterns in the movements of plains zebra. As in many other mammals, lactation in this species significantly alters water and energy needs. We investigated leadership in tightly knit harems and loosely bonded herds of multiple harems. Harem females tended to have habitual roles in the initiation of harem movement. In herds, however, we found no consistent leaders among harems. At both levels of social organization, lactation was a key determinant of leadership. In harems, lactating females were more likely to initiate movement than nonlactating females. In turn, harems containing lactating females were more likely to lead herd movements. Thus, we conclude that social relationships and reproductive state together shape the interactions that produce group behaviours. One benefit to lactating females of leading herd movements is preferential access to scarce water. Thus, leadership roles in group decisions may have fitness consequences.
|
|
|
Hasenjager, M. J., & Dugatkin, L. A. Social Network Analysis in Behavioral Ecology. Advances in the Study of Behavior. Academic Press.
Abstract: Abstract In recent years, behavioral ecologists have embraced social network analysis (SNA) in order to explore the structure of animal societies and the functional consequences of that structure. We provide a conceptual introduction to the field that focuses on historical developments, as well as on novel insights generated by recent work. First, we discuss major advances in the analysis of nonhuman societies, culminating in the use of SNA by behavioral ecologists. Next, we discuss how network-based approaches have enhanced our understanding of social structure and behavior over the past decade, focusing on: (1) information transmission, (2) collective behaviors, (3) animal personality, and (4) cooperation. These behaviors and phenomena possess several features—e.g., indirect effects, emergent properties—that network analysis is well equipped to handle. Finally, we highlight recent developments in SNA that are allowing behavioral ecologists to address increasingly sophisticated questions regarding the structure and function of animal sociality.
|
|
|
Meunier, H., Leca, J. B., Deneubourg, J. L., & Petit, O. (2006). Group movement decisions in capuchin monkeys: the utility of an experimental study and a mathematical model to explore the relationship between individual and collective behaviours. Behaviour, 143, 1511–1527.
Abstract: In primate groups, collective movements are typically described as processes dependent on leadership mechanisms. However, in some species, decision-making includes negotiations and distributed leadership. These facts suggest that simple underlying processes may explain certain decision mechanisms during collective movements. To study such processes, we have designed experiments on white-faced capuchin monkeys (Cebus capucinus) during which we provoked collective movements involving a binary choice. These experiments enabled us to analyse the spatial decisions of individuals in the group. We found that the underlying process includes anonymous mimetism, which means that each individual may influence all members of the group. To support this result, we created a mathematical model issued from our experimental data. A totally anonymous model does not fit perfectly with our experimental distribution. A more individualised model, which takes into account the specific behaviour of social peripheral individuals, revealed the validity of the mimetism hypothesis. Even though white-faced capuchins have complex cognitive abilities, a coexistence of anonymous and social mechanisms appears to influence their choice of direction during collective movements. The present approach may offer vital insights into the relationships between individual behaviours and their emergent collective acts.
|
|
|
Pillot, M. - H., & Deneubourg, J. - L. (2010). Collective movements, initiation and stops: Diversity of situations and law of parsimony. Behav. Process., 84(3), 657–661.
Abstract: The environment of animals is often heterogeneous, containing zones that may be dedicated specifically to resting, drinking or feeding. These functional zones may spread over a more or a less extensive area. Thus, mobile animals may have to move from one patch to another when resources are locally depleted or when they need to change activity. The mechanisms involved in collective movement appear simple at first glance, but a brief reflection shows the real difficulty of the problem in terms of the numerous environmental, physical, physiological and social parameters involved. This review is mainly concerned with collective movements, which are characterised by a directional and temporal coordination, where individuals mutually influence each other, meaning this coordination mainly depends on social interactions ([Huth and Wissel, 1992], [Warburton and Lazarus, 1991], [Couzin and Krause, 2003] and [Couzin et al., 2002]). In literature, two types of movement are discussed: large-scale movement and small-scale movement. First, we define these types of movement and then discuss the behavioural mechanisms involved. Secondly, we show that short and long movement but also moving and stopping may result from the outcome of parameters modulation underpinning collective decision-making.
|
|
|
Ramseyer, A., Petit, O., & Thierry, B. (2009). Decision-making in group departures of female domestic geese. Behaviour, 146, 351–371.
Abstract: Group-living animals have to make trade-offs to reach consensus and travel together. We investigated the recruitment processes underpinning decision-making at departure in a group of 20 female domestic geese (Anser domesticus) kept in semi-free-range conditions. Two observers continuously videotaped the behaviours of the birds. Data were analyzed using multiple regression analyses. We found that decision-making was a continuous and distributed process. Departure was preceded by an increase in the arousal state of group members and their initial orientation influenced recruitment. Patterns of group movement could be predicted from the behaviours of individuals before departure. Individuals' locations, moves and signals could act as passive or communicative cues. A higher number of vocalisations and arousal behaviours led to a larger number of individuals recruited. Some individuals were more efficient than others in recruiting followers but any geese could initiate a movement. First movers recruited a higher number of mates when they had a greater number of neighbours. Not only the first mover but also the behaviours of the second and third movers prompted further individuals to follow. There was no evidence that geese were able to intentionally recruit others, rather they synchronized and adjusted each other's motives until reaching a consensus.
|
|