|
Larose, C., Richard-Yris, M. - A., Hausberger, M., & Rogers, L. J. (2006). Laterality of horses associated with emotionality in novel situations. Laterality, 11(4), 355–367.
Abstract: We have established that lateral biases are characteristic of visual behaviour in 65 horses. Two breeds, Trotters and French Saddlebreds aged 2 to 3, were tested on a novel object test. The main finding was a significant correlation between emotionality index and the eye preferred to view the novel stimulus: the higher the emotionality, the more likely that the horse looked with its left eye. The less emotive French Saddlebreds, however, tended to glance at the object using the right eye, a tendency that was not found in the Trotters, although the emotive index was the same for both breeds. The youngest French Saddlebreds did not show this trend. These results are discussed in relation to the different training practices for the breeds and broader findings on lateralisation in different species.
|
|
|
Levy, J. (1977). The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann N Y Acad Sci, 299, 264–272.
|
|
|
Panksepp, J. (2005). Affective consciousness: Core emotional feelings in animals and humans. Conscious Cogn, 14(1), 30–80.
Abstract: The position advanced in this paper is that the bedrock of emotional feelings is contained within the evolved emotional action apparatus of mammalian brains. This dual-aspect monism approach to brain-mind functions, which asserts that emotional feelings may reflect the neurodynamics of brain systems that generate instinctual emotional behaviors, saves us from various conceptual conundrums. In coarse form, primary process affective consciousness seems to be fundamentally an unconditional “gift of nature” rather than an acquired skill, even though those systems facilitate skill acquisition via various felt reinforcements. Affective consciousness, being a comparatively intrinsic function of the brain, shared homologously by all mammalian species, should be the easiest variant of consciousness to study in animals. This is not to deny that some secondary processes (e.g., awareness of feelings in the generation of behavioral choices) cannot be evaluated in animals with sufficiently clever behavioral learning procedures, as with place-preference procedures and the analysis of changes in learned behaviors after one has induced re-valuation of incentives. Rather, the claim is that a direct neuroscientific study of primary process emotional/affective states is best achieved through the study of the intrinsic (“instinctual”), albeit experientially refined, emotional action tendencies of other animals. In this view, core emotional feelings may reflect the neurodynamic attractor landscapes of a variety of extended trans-diencephalic, limbic emotional action systems-including SEEKING, FEAR, RAGE, LUST, CARE, PANIC, and PLAY. Through a study of these brain systems, the neural infrastructure of human and animal affective consciousness may be revealed. Emotional feelings are instantiated in large-scale neurodynamics that can be most effectively monitored via the ethological analysis of emotional action tendencies and the accompanying brain neurochemical/electrical changes. The intrinsic coherence of such emotional responses is demonstrated by the fact that they can be provoked by electrical and chemical stimulation of specific brain zones-effects that are affectively laden. For substantive progress in this emerging research arena, animal brain researchers need to discuss affective brain functions more openly. Secondary awareness processes, because of their more conditional, contextually situated nature, are more difficult to understand in any neuroscientific detail. In other words, the information-processing brain functions, critical for cognitive consciousness, are harder to study in other animals than the more homologous emotional/motivational affective state functions of the brain.
|
|
|
Rizzolatti, G., Fogassi, L., & Gallese, V. (2006). Mirrors of the mind. Sci Am, 295(5), 54–61.
|
|
|
Rogers, L. J. (2000). Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang, 73(2), 236–253.
Abstract: Lateralization of the brain appeared early in evolution and many of its features appear to have been retained, possibly even in humans. We now have a considerable amount of information on the different forms of lateralization in a number of species, and the commonalities of these are discussed, but there has been relatively little investigation of the advantages of being lateralized. This article reports new findings on the differences between lateralized and nonlateralized chicks. The lateralized chicks were exposed to light for 24 h on day 19 of incubation, a treatment known to lead to lateralization of a number of visually guided responses, and the nonlateralized chicks were incubated in the dark. When they were feeding, the lateralized chicks were found to detect a stimulus resembling a raptor with shorter latency than nonlateralized chicks. This difference was not a nonspecific effect caused by the light-exposed chicks being more distressed by the stimulus. Instead, it appears to be a genuine advantage conferred by having a lateralized brain. It is suggested that having a lateralized brain allows dual attention to the tasks of feeding (right eye and left hemisphere) and vigilance for predators (left eye and right hemisphere). Nonlateralized chicks appear to perform these dual tasks less efficiently than lateralized ones. Reference is made to other species in discussing these results.
|
|
|
Staunton, H. (2005). Mammalian sleep. Naturwissenschaften, 92(5), 203–220.
Abstract: This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of 'I'ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.
|
|