|
Andrews, F. M., Ralston, S. L., Sommardahl, C. S., Maykuth, P. L., Green, E. M., White, S. L., et al. (1994). Weight, water, and cation losses in horses competing in a three-day event. J Am Vet Med Assoc, 205(5), 721–724.
Abstract: Body weight of 48 horses competing in a 3-day event was measured the day before the event (baseline), following the dressage phase of the event (day 1), after the endurance phases of the event (day 2), and 18 to 24 hours after the endurance phases (day 3). Plasma sodium and potassium concentrations were measured the evening before, immediately after, and 10 minutes after the endurance phases. Total body water, water loss, and net exchangeable cation loss were then calculated. Body weight and total body water were significantly decreased, compared with baseline values, at all times during the event, and significant water loss was detected. The largest changes were recorded after the endurance phases of the event. Water deficits were still detected 18 to 24 hours after the endurance phases of the event. Mean plasma sodium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, and remained increased after the 10-minute recovery period, presumably because of dehydration. Mean plasma potassium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, but was not increased after the 10-minute recovery period.
|
|
|
Belonje, P. C., & van Niekerk, C. H. (1975). A review of the influence of nutrition upon the oestrous cycle and early pregnancy in the mare. J Reprod Fertil Suppl, (23), 167–169.
Abstract: Attention is drawn to the beneficial effect of improved nutrition during winter and early spring on the ovarian activity of mares. Furthermore, the necessity of an adequate plane of nutrition during early pregnancy to prevent embryonic resorption is stressed.
|
|
|
Budras, K. D., Scheibe, K., Patan, B., Streich, W. J., & Kim, K. (2001). Laminitis in Przewalski horses kept in a semireserve. J Vet Sci, 2(1), 1–7.
Abstract: Semireserves were created by the European Conservation Project for scientific research in preparation for reintroduction in the wilderness. They are defined as enclosures large enough to carry a group of Przewalski horses throughout the year without any additional feeding. The semireserve offers diverse opportunities for significant scientific research. As part of a general screening program, the hoof development in a group of Przewalski horses was investigated in the semireserve Schorfheide near Berlin. Since the foundation of this semireserve in 1992, veterinary treatment was not necessary with the exception of hoof trimming in two animals in 1993. However, major health problems were encountered in the spring of 1999, when three other mares showed signs of laminitis. The initial diagnosis by the authors and the local veterinary surgeon based on observation of behaviour, gait, stance, walk and trot of three mares whose initial weights were higher than those of the healthy mares. The initial diagnosis was confirmed by palpation and the occurrence of very deep horn rings on all hooves and a laminitic horn ring on the right front hoof of one mare. An adequate laminitic therapy was not possible under the conditions of a semireserve. The applied management aimed at two goals: 1. To reduce endotoxin production and acidosis in the horses by reducing the ingestion of carbohydrate rich food. 2. To reduce the mares level of activity and to prevent tearing of the suspensory apparatus of the coffin bone. To achieve these two goals it was decided to remove the three laminitic mares from the rich pasture in the main part of the semireserve and to confine them onto the poorer pasture of the small separately fenced area. All three affected mares had fully recovered from their laminitic condition. Prevention of grass laminitis can be achieved by the following measures: 1. Reduction in grass intake could be achieved by increasing the grazing pressure by an increase in stocking rate of the horses or mixed grazing with another species such as sheep. 2. A longer term solution to the problem may well be to sow specific varieties of grass with lower concentrations of water soluble carbohydrate.
|
|
|
Carroll, C. L., & Huntington, P. J. (1988). Body condition scoring and weight estimation of horses. Equine Vet J, 20(1), 41–45.
Abstract: Three hundred and seventy two horses of varying breeds, height and fatness were weighed and measured for height at the withers. They were assessed for condition score by adaptation of a previously published method. The heart girth and length of 281 of the horses were also measured. Weight of horses was highly correlated (P less than 0.001) with height (r2 = 0.62), condition score (r2 = 0.22) and girth2 x length (r2 = 0.90). Nomograms were constructed to predict weight from height and condition score, and girth and length measurements. Weight can also be accurately estimated from the formula: (formula, see text) The average value of 'Y' in this experiment was 11900 and this estimated weight with more accuracy than some previously published values of 'Y'. Racing Thoroughbred horses were found to be significantly lighter than non-racing Thoroughbreds of the same height and condition score. The method of assessment of condition score was shown to be repeatable between different operators with varying degrees of experience.
|
|
|
Cattell, R. B., & Korth, B. (1973). The isolation of temperament dimensions in dogs. Behav Biol, 9(1), 15–30.
|
|
|
Clayton, H. M., Lanovaz, J. L., Schamhardt, H. C., & van Wessum, R. (1999). The effects of a rider's mass on ground reaction forces and fetlock kinematics at the trot. Equine Vet J Suppl, 30, 218–221.
Abstract: Ground reaction force (GRF) measurements are often normalised to body mass to facilitate inter-individual comparisons. The objective of this study was to explore the effect of a rider on the GRFs and fetlock joint kinematics of trotting horses. The subjects were 5 dressage-trained horses and 3 experienced dressage riders. Ground reaction force measurements and sagittal view videotapes were recorded as the horses trotted at the same velocity in hand (3.49 +/- 0.52 m/s) and with a rider (3.49 +/- 0.46 m/s). Data were time-normalised to stance duration. Ground reaction force measurements were expressed in absolute terms and normalised to the system mass (horse or horse plus rider). All the horses showed changes in the same direction when comparing the ridden condition with the in-hand condition. There was an increase in the absolute peak vertical GRFs of the fore- and hindlimbs with a rider. However, the mass-normalised peak vertical GRFs were lower for the ridden condition, with the peak occurring later in the forelimbs and earlier in the hindlimbs compared with the inhand condition. Maximal fetlock angle and its time of occurrence were similar for the 2 conditions, but the fore fetlock joint was more extended during the later part of the stance phase in ridden horses. The presence of a rider appeared to affect the GRFs and fetlock joint kinematics differently in the fore- and hindlimbs, and the ridden horse did not seem to be equivalent to a proportionately larger horse. This should be considered when normalising for body mass in studies comparing horses in hand and ridden horses.
|
|
|
Dyson, S., & Murray, R. (2003). Pain associated with the sacroiliac joint region: a clinical study of 74 horses. Equine Vet J, 35(3), 240–245.
Abstract: REASONS FOR PERFORMING STUDY: There has been no large study of horses with suspected sacroiliac (SI) joint region pain in which the clinical diagnosis has been supported by either abnormal radiopharmaceutical activity in the SI joint region or by periarticular infiltration of local anaesthetic solution. OBJECTIVES: To describe the clinical features of horses with SI joint region pain, to document the age, breed, sex, discipline, size and conformation of affected horses and to compare these with the author's (SD) normal case population and to document the results of infiltration of local anaesthetic solution around the SI joint region. METHODS: Horses were selected for inclusion in the study based upon the exclusion of other causes of lameness or poor performance, together with clinical signs suggestive of SI joint pain and abnormal radiopharmaceutical activity in the SI joint region and/or a positive response to periarticular infiltration of local anaesthetic solution. RESULTS: Sacroiliac joint region disease was identified in 74 horses between November 1997 and March 2002. Dressage and showjumping horses appeared to be at particular risk (P < 0.001). Affected horses were generally slightly older than the normal clinic population (P < 0.0001), taller at the withers (P < 0.0001) and of greater bodyweight (P < 0.01). There was a significant effect of breed (P < 0.001), with a substantially higher proportion of Warmblood horses (51%) in the SI pain group compared to the normal clinic population (29%). There was no correlation between conformation and the presence of SI joint region pain. The tubera sacrale appeared grossly symmetrical in most (95%) horses. Poor development of the epaxial muscles in the thoracolumbar region and asymmetry of the hindquarter musculature were common. Twenty-six horses (35%) showed restricted flexibility of the thoracolumbar region and 10 (16%) had an exaggerated response to pressure applied over the tubera sacrale. Fourteen horses (19%) were reluctant to stand on one hindlimb for prolonged periods. The majority of horses (75%) had a straight hindlimb flight and only 18% moved closely behind or plaited. In all horses restricted hindlimb impulsion was the predominant feature; invariably this was most obvious when the horse was ridden. Stiffness, unwillingness to work on the bit and poor quality canter were common. Sacroiliac joint region pain was seen alone (47%), or in conjunction with thoracolumbar pain (16%), hindlimb lameness (20%), forelimb lameness (7%) or a combination of problems (10%). Seventy-three horses (99%) had abnormalities of the SI joint region identified using nuclear scintigraphy. Infiltration of local anaesthetic solution around the SI joint region produced profound improvement in gait in all 34 horses in which it was performed. CONCLUSIONS AND POTENTIAL RELEVANCE: Careful clinical examination combined with scintigraphic evaluation of the SI joint region and local analgesia can enable a more definitive diagnosis of SI joint region pain than has previously been possible.
|
|
|
Fazio, E., Medica, P., Cravana, C., Giacoppo, E., & Ferlazzo, A. (2008). Effect of Short-Distance Road Transport on Thyroid Function, Rectal Temperature, Body Weight and Heart Rate of Stallions. In IESM 2008.
Abstract: Aim of study was to investigate the effects of transport stress on thyroid response, body weight, rectal temperature and heart rate changes in one hundred twenty-six healthy stallions in basal conditions, before and after short road transport. One hundred twenty-six Thoroughbreds and crossbreds stallions with previous travelling experience, aged 4 to 15 yr, were transported by road in a commercial trailer for a period of 3 h (distance <300 km). Blood samples and physiological parameters were collected at 0800 (basal I) and at 1100 (basal II), in each horse“s box, one week before the loading and transport in basal conditions, and one week later, at 0800 immediately before loading (pre-transport), and after 3 h period of transport and unloading, on their arrival at the breeding stations (post-transport), in each new horse”s box, within 30 min. Increases in circulating T3, T4 and fT4 levels (P < 0.01), but not for fT3 levels, were observed after transport, as compared to before loading values, irrespective of different breed. Lower T4 and fT4 levels were observed in basal II (P < 0.01) than basal I and before loading values (pre-transport). After transport Thoroughbreds showed higher fT3 (P < 0.05) and fT4 (P < 0.01) levels than crossbred stallions. No significant differences for T3 and T4 changes were observed. A significant increase in rectal temperature (P < 0.01) and heart rate (P < 0.05) was observed after transport, as compared to before loading values (pre-transport). No differences between basal I, basal II and before loading values (pre-transport) for physiological parameters were observed.
The highest T3, T4 and fT4 levels recorded after short transport seem to suggest a preferential release from the thyroid gland. The results indicate that short road transport stress contributes significantly to thyroid hormone changes, according to different breed, and to the increase in rectal temperature and heart rate. No differences related to different age were observed.
|
|
|
Fruehwirth, B., Peham, C., Scheidl, M., & Schobesberger, H. (2004). Evaluation of pressure distribution under an English saddle at walk, trot and canter. Equine Vet J, 36(8), 754–757.
Abstract: REASONS FOR PERFORMING STUDY: Basic information about the influence of a rider on the equine back is currently lacking. HYPOTHESIS: That pressure distribution under a saddle is different between the walk, trot and canter. METHODS: Twelve horses without clinical signs of back pain were ridden. At least 6 motion cycles at walk, trot and canter were measured kinematically. Using a saddle pad, the pressure distribution was recorded. The maximum overall force (MOF) and centre of pressure (COP) were calculated. The range of back movement was determined from a marker placed on the withers. RESULTS: MOF and COP showed a consistent time pattern in each gait. MOF was 12.1 +/- 1.2 and 243 +/- 4.6 N/kg at walk and trot, respectively, in the ridden horse. In the unridden horse MOF was 172.7 +/- 11.8 N (walk) and 302.4 +/- 33.9 N (trot). At ridden canter, MOF was 27.2 +/- 4.4 N/kg. The range of motion of the back of the ridden horse was significantly lower compared to the unridden, saddled horse. CONCLUSIONS AND POTENTIAL RELEVANCE: Analyses may help quantitative and objective evaluation of the interaction between rider and horse as mediated through the saddle. The information presented is therefore of importance to riders, saddlers and equine clinicians. With the technique used in this study, style, skill and training level of different riders can be quantified, which would give the opportunity to detect potentially harmful influences and create opportunities for improvement.
|
|
|
Graham, M., & Letz, R. (1979). Within-species variation in the development of ultrasonic signaling of preweanling rats. Dev Psychobiol, 12(2), 129–136.
Abstract: The development of litter and individual differences in the rate of ultrasonic signaling of neonatal rats was studied. Systematic variations among litters and individuals emerged, without differential treatment. These differences were not correlated with variations in general development as indexed by body weight. Two experiments using a cross-fostering design showed that litter differences developed independently of variations in postnatal environment. These results indicate that the variations among litters in ultrasound rate have a prenatal, possibly genetic, etiology and may represent reliable indicants of response to environmental stress.
|
|