|
Hinchcliff, K. W., Kohn, C. W., Geor, R., McCutcheon, L. J., Foreman, J., Andrews, F. M., et al. (1995). Acid:base and serum biochemistry changes in horses competing at a modified 1 Star 3-day-event. Equine Vet J Suppl, (20), 105–110.
Abstract: We examined the effects of participation in each of 3 modifications of Day 2 of a 3-day-event on blood and serum variables indicative of hydration, acid:base status and electrolyte homeostasis of horses. Three groups of horses – 8 European (E) horses and 2 groups each of 9 North American horses performed identical Days 1 (dressage) and 3 (stadium jumping) of a 3-day-event. E horses and one group of the North American horses (TD) performed modifications of Day 2 of a 1 Star 3-day-event and the other group of North American horses (HT) performed a Horse Trial on Day 2. Jugular venous blood was collected from each horse on the morning of Day 2 before any warm-up activity, between 4 min 55 s and 5 min 15 s after Phase D and the following morning. Eight E horses, 5 TD horses and 8 HT horses completed the trials. There were few significant differences in acid:base or serum biochemistry variables detected among horses performing either 2 variations of the Speed and Endurance day of a 1 Star 3-day-event, or a conventional Horse Trial. Failure to detect differences among groups may have been related to the low statistical power associated with the small number of horses, especially in the TD group, variation in quality of horses among groups and the different times of the day at which the E horses competed. Differences detected among time points were usually common to all groups and demonstrated metabolic acidosis with a compensatory respiratory alkalosis, a reduction in total body water and cation content, and hypocalcaemia. Importantly, horses of all groups did not replenish cation, chloride, and calcium deficits after 14-18 h of recovery.
|
|
|
Houpt, K. A., Eggleston, A., Kunkle, K., & Houpt, T. R. (2000). Effect of water restriction on equine behaviour and physiology. Equine Vet J, 32(4), 341–344.
Abstract: Six pregnant mares were used to determine what level of water restriction causes physiological and/or behavioural changes indicative of stress. Nonlegume hay was fed ad libitum. During the first week of restriction, 5 l water/100 kg bwt was available, during the second week 4 l/100 kg bwt and, during the third week, 3 l/100 kg bwt. Ad libitum water intake was 6.9 l/100 kg bwt; at 3 l/100 kg bwt water intake was 42% of this. Daily hay intake fell significantly with increasing water restriction from 12.9 +/- 0.75 kg to 8.3 +/- 0.54 kg; bodyweight fell significantly for a total loss of 48.5 +/- 8.3 kg in 3 weeks. Daily blood samples were analysed; osmolality rose significantly with increasing water restriction from 282 +/- 0.7 mosmols/kg to 293.3 +/- 0.8 mosmols/kg bwt, but plasma protein and PCV did not change significantly. Cortisol concentrations fell from 8.1 ng/ml to 6.4 ng/ml over the 3 week period. Aldosterone fell from 211.3 +/- 74.2 pg/ml to 92.5 +/- 27.5 pg/ml at the end of the first week. The behaviour of 4 of the 6 mares was recorded 24 h/day for the duration of the study. The only significant difference was in time spent eating, which decreased with increasing water restriction from 46 +/- 3% to 30 +/- 3%. It is concluded that water restriction to 4 l/100 kg bwt dehydrates pregnant mares and may diminish their welfare, but is not life- or pregnancy-threatening.
|
|
|
Houpt, K. A., Perry, P. J., Hintz, H. F., & Houpt, T. R. (1988). Effect of meal frequency on fluid balance and behavior of ponies. Physiol. Behav., 42(5), 401–407.
Abstract: Twelve ponies were fed their total daily ration either as one large meal or divided into six small meals. Pre- and post-feeding behavior was recorded six times a day. Blood samples were taken for 30 min before and two hr after the meal. Plasma protein increased from 7.0 to a peak of 7.3 g/dl with small meals and from 7.3 to 8.1 g/dl with large meals, and returned to pre-feeding levels by 90 min post-feeding. Hematocrit rose from 33.3 to 34.1% with small meals and from 33.0 to 36.0% with large meals. These rapid and short-lived increases indicate a decrease in plasma volume. Plasma osmolality rose with feeding from 283 to 285 mosmoles/kg with small meals and from 281 to 288 mosmoles/kg with large meals. Water availability had no significant effect on blood changes. Digestibility and rate of passage were measured with chromic oxide, but there were no differences. Vocalizing (neighing) and walking occurred more often before than after feeding, while eating bedding and engaging in other oral behaviors were more frequent after feeding.
|
|
|
Jablonska, E. M., Ziolkowska, S. M., Gill, J., Szykula, R., & Faff, J. (1991). Changes in some haematological and metabolic indices in young horses during the first year of jump-training. Equine Vet J, 23(4), 309–311.
Abstract: Effects of an 18 min exercise test, on three separate occasions during a one year jump-training programme, was studied in seven horses. Determinations were carried out on venous blood for packed cell volume, haemoglobin, total protein, lactate and pyruvate, glucose, free fatty acids, insulin, glucagon, blood gases, bicarbonate, pH, aldolase, aspartate aminotransferase and alanine amino-transferase. Exercise caused a slight increase in lactate and pyruvate, total protein, aldolase, alanine aminotransferase, pO2, bicarbonate and pH. Glucose, free fatty acids and pCO2 levels decreased. Training caused no significant difference in these changes. However, during the year, increases in lactate and decreases in pH (resting levels) were observed.
|
|
|
Sufit, E., Houpt, K. A., & Sweeting, M. (1985). Physiological stimuli of thirst and drinking patterns in ponies. Equine Vet J, 17(1), 12–16.
Abstract: The stimuli that elicit thirst were studied in four ponies. Nineteen hours of water deprivation produced an increase in plasma protein from 67 +/- 0.1 g/litre to 72 +/- 2 g/litre, a mean (+/- se) increase in plasma sodium from 139 +/- 3 to 145 +/- 2 mmol/litre and an increase in plasma osmolality from 297 +/- 1 to 306 +/- 2 mosmol/litre. Undeprived ponies drank 1.5 +/- 0.9 kg/30 mins; 19 h deprived ponies drank 10.2 +/- 2.5 kg/30 mins and corrected the deficits in plasma protein, plasma sodium and plasma osmolality as well as compensating for the water they would have drunk during the deprivation period. In order to determine if an increase in plasma osmolality would stimulate thirst, 250 ml of 15 per cent sodium chloride was infused intravenously. The ponies drank when osmolality increased 3 per cent and when plasma sodium rose from 136 +/- 3 mmol/litre to 143 +/- 3 mmol/litre. Ponies infused with 15 per cent sodium chloride drank 2.9 +/- 0.7 kg; those infused with 0.9 per cent sodium chloride drank 0.7 +/- 0.5 kg. In order to determine if a decrease in plasma volume would stimulate thirst, ponies were injected with 1 or 2 mg/kg bodyweight (bwt) frusemide. Plasma protein rose from 68 +/- 2 g/litre pre-injection to 75 +/- 2 g/litre 1 h after 1 mg/kg bwt frusemide and to 81 +/- 1 g/litre 1 h after 2 mg/kg bwt frusemide.(ABSTRACT TRUNCATED AT 250 WORDS)
|
|