|
Anderson, J. R., Kuroshima, H., Kuwahata, H., & Fujita, K. (2004). Do squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) predict that looking leads to touching? Anim. Cogn., 7(3), 185–192.
Abstract: Squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) were tested using an expectancy violation procedure to assess whether they use an actor's gaze direction, signaled by congruent head and eye orientation, to predict subsequent behavior. The monkeys visually habituated to a repeated sequence in which the actor (a familiar human or a puppet) looked at an object and then picked it up, but they did not react strongly when the actor looked at an object but then picked up another object. Capuchin monkeys' responses in the puppet condition were slightly more suggestive of expectancy. There was no differential responding to congruent versus incongruent look-touch sequences when familiarization trials were omitted. The weak findings contrast with a strongly positive result previously reported for tamarin monkeys. Additional evidence is required before concluding that behavior prediction based on gaze cues typifies primates; other approaches for studying how they process attention cues are indicated.
|
|
|
Beckers, T., Miller, R. R., De Houwer, J., & Urushihara, K. (2006). Reasoning rats: forward blocking in Pavlovian animal conditioning is sensitive to constraints of causal inference. J Exp Psychol Gen, 135(1), 92–102.
Abstract: Forward blocking is one of the best-documented phenomena in Pavlovian animal conditioning. According to contemporary associative learning theories, forward blocking arises directly from the hardwired basic learning rules that govern the acquisition or expression of associations. Contrary to this view, here the authors demonstrate that blocking in rats is flexible and sensitive to constraints of causal inference, such as violation of additivity and ceiling considerations. This suggests that complex cognitive processes akin to causal inferential reasoning are involved in a well-established Pavlovian animal conditioning phenomenon commonly attributed to the operation of basic associative processes.
|
|
|
Blaisdell, A. P., & Cook, R. G. (2005). Integration of spatial maps in pigeons. Anim. Cogn., 8(1), 7–16.
Abstract: The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
|
|
|
Blaisdell, A. P., Sawa, K., Leising, K. J., & Waldmann, M. R. (2006). Causal reasoning in rats. Science, 311(5763), 1020–1022.
Abstract: Empirical research with nonhuman primates appears to support the view that causal reasoning is a key cognitive faculty that divides humans from animals. The claim is that animals approximate causal learning using associative processes. The present results cast doubt on that conclusion. Rats made causal inferences in a basic task that taps into core features of causal reasoning without requiring complex physical knowledge. They derived predictions of the outcomes of interventions after passive observational learning of different kinds of causal models. These competencies cannot be explained by current associative theories but are consistent with causal Bayes net theories.
|
|
|
Boughner, R. L., & Papini, M. R. (2006). Appetitive latent inhibition in rats: preexposure performance does not predict conditioned performance. Behav. Process., 72(1), 42–51.
Abstract: Nonreinforced preexposure to a conditioned stimulus impairs subsequent conditioning with that stimulus. The goal of these studies was to assess the extent to which acquisition performance could be predicted from preexposure performance using a correlational approach. For both preexposure and autoshaping, four measures of performance were computed, including overall average lever pressing, lever pressing in the initial session, percentage change in lever pressing, and slopes. These measures were correlated in a large sample of rats trained in an autoshaping situation. None of the three measures of autoshaping performance was consistently predicted by any of the three measures of preexposure performance. These results are consistent with the view that latent inhibition is not reducible to long-term habituation.
|
|
|
Byrne, R. W., & Bates, L. A. (2006). Why are animals cognitive? Curr Biol, 16(12), R445–8.
|
|
|
Caldwell, C. A., & Whiten, A. (2004). Testing for social learning and imitation in common marmosets, Callithrix jacchus, using an artificial fruit. Anim. Cogn., 7(2), 77–85.
Abstract: We tested for social learning and imitation in common marmosets using an artificial foraging task and trained conspecific demonstrators. We trained a demonstrator marmoset to open an artificial fruit, providing a full demonstration of the task to be learned. Another marmoset provided a partial demonstration, controlling for stimulus enhancement effects, by eating food from the outside of the apparatus. We thus compared three observer groups, each consisting of four animals: those that received the full demonstration, those that received the partial demonstration, and a control group that saw no demonstration prior to testing. Although none of the observer marmosets succeeded in opening the artificial fruit during the test periods, there were clear effects of demonstration type. Those that saw the full demonstration manipulated the apparatus more overall, whereas those from the control group manipulated it the least of the three groups. Those from the full-demonstration group also contacted the particular parts of the artificial fruit that they had seen touched (localised stimulus enhancement) to a greater extent than the other two groups. There was also an interaction between the number of hand and mouth touches made to the artificial fruit for the full- and partial-demonstration groups. Whether or not these data represent evidence for imitation is discussed. We also propose that the clear differences between the groups suggest that social learning mechanisms provide real benefits to these animals in terms of developing novel food-processing skills analogous to the one presented here.
|
|
|
Call, J. (2006). Inferences by exclusion in the great apes: the effect of age and species. Anim. Cogn., 9(4), 393–403.
Abstract: This study investigated the ability of chimpanzees, gorillas, orangutans, and bonobos to make inferences by exclusion using the procedure pioneered by Premack and Premack (Cognition 50:347-362, 1994) with chimpanzees. Thirty apes were presented with two different food items (banana vs. grape) on a platform and covered with identical containers. One of the items was removed from the container and placed between the two containers so that subjects could see it. After discarding this item, subjects could select between the two containers. In Experiment 1, apes preferentially selected the container that held the item that the experimenter had not discarded, especially if subjects saw the experimenter remove the item from the container (but without seeing the container empty). Experiment 3 in which the food was removed from one of the containers behind a barrier confirmed these results. In contrast, subjects performed at chance levels when a stimulus (colored plastic chip: Exp. 1; food item: Exp. 2 and Exp. 3) designated the item that had been removed. These results indicated that apes made inferences, not just learned to use a discriminative cue to avoid the empty container. Apes perceived and treated the item discarded by the experimenter as if it were the very one that had been hidden under the container. Results suggested a positive relationship between age and inferential ability independent of memory ability but no species differences.
|
|
|
Chiesa, A. D., Pecchia, T., Tommasi, L., & Vallortigara, G. (2006). Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain. Anim. Cogn., 9(4), 281–293.
Abstract: A series of place learning experiments was carried out in young chicks (Gallus gallus) in order to investigate how the geometry of a landmark array and that of a walled enclosure compete when disoriented animals could rely on both of them to re-orient towards the centre of the enclosure. A square-shaped array (four wooden sticks) was placed in the middle of a square-shaped enclosure, the two structures being concentric. Chicks were trained to ground-scratch to search for food hidden in the centre of the enclosure (and the array). To check for effects of array degradation, one, two, three or all landmarks were removed during test trials. Chicks concentrated their searching activity in the central area of the enclosure, but their accuracy was inversely contingent on the number of landmarks removed; moreover, the landmarks still present within the enclosure appeared to influence the shape of the searching patterns. The reduction in the number of landmarks affected the searching strategy of chicks, suggesting that they had focussed mainly on local cues when landmarks were present within the enclosure. When all the landmarks were removed, chicks searched over a larger area, suggesting an absolute encoding of distances from the local cues and less reliance on the relationships provided by the geometry of the enclosure. Under conditions of monocular vision, chicks tended to rely on different strategies to localize the centre on the basis of the eye (and thus the hemisphere) in use, the left hemisphere attending to details of the environment and the right hemisphere attending to the global shape.
|
|
|
Church, D. L., & Plowright, C. M. S. (2006). Spatial encoding by bumblebees (Bombus impatiens) of a reward within an artificial flower array. Anim. Cogn., 9(2), 131–140.
Abstract: We presented bumblebees a spatial memory task similar to that used with other species (e.g., cats, dogs, and pigeons). In some conditions we allowed for presence of scent marks in addition to placing local and global spatial cues in conflict. Bumblebees (Bombus impatiens) were presented an array of artificial flowers within a flight cage, one flower offering reward (S+), while the others were empty (S-). Bees were tested with empty flowers. In Experiment 1, flowers were either moved at the time of testing or not. Bees returned to the flower in the same absolute position of the S+ (the flower-array-independent (FAI) position), even if it was in the wrong position relative to the S- and even when new flower covers prevented the use of possible scent marks. New flower covers (i.e., without possible scent marks) had the effect of lowering the frequency of probing behavior. In Experiment 2, the colony was moved between training and testing. Again, bees chose the flower in the FAI position of the S+, and not the flower that would be chosen using strictly memory for a flight vector. Together, these experiments show that to locate the S+ bees did not rely on scent marks nor the positions of the S-, though the S- were prominent objects close to the goal. Also, bees selected environmental features to remember the position of the S+ instead of relying upon a purely egocentric point of view. Similarities with honeybees and vertebrates are discussed, as well as possible encoding mechanisms.
|
|