|
Arnold, K., & Zuberbuhler, K. (2006). Language evolution: semantic combinations in primate calls. Nature, 441(7091), 303.
Abstract: Syntax sets human language apart from other natural communication systems, although its evolutionary origins are obscure. Here we show that free-ranging putty-nosed monkeys combine two vocalizations into different call sequences that are linked to specific external events, such as the presence of a predator and the imminent movement of the group. Our findings indicate that non-human primates can combine calls into higher-order sequences that have a particular meaning.
|
|
|
Biro, D., Sumpter, D. J. T., Meade, J., & Guilford, T. (2006). From Compromise to Leadership in Pigeon Homing. Curr Biol, 16(21), 2123–2128.
Abstract: Summary A central problem faced by animals traveling in groups is how navigational decisions by group members are integrated, especially when members cannot assess which individuals are best informed or have conflicting information or interests , , , and . Pigeons are now known to recapitulate faithfully their individually distinct habitual routes home , and , and this provides a novel paradigm for investigating collective decisions during flight under varying levels of interindividual conflict. Using high-precision GPS tracking of pairs of pigeons, we found that if conflict between two birds' directional preferences was small, individuals averaged their routes, whereas if conflict rose over a critical threshold, either the pair split or one of the birds became the leader. Modeling such paired decision-making showed that both outcomes--compromise and leadership--could emerge from the same set of simple behavioral rules. Pairs also navigated more efficiently than did the individuals of which they were composed, even though leadership was not necessarily assumed by the more efficient bird. In the context of mass migration of birds and other animals, our results imply that simple self-organizing rules can produce behaviors that improve accuracy in decision-making and thus benefit individuals traveling in groups , and .
|
|
|
Doligez, B., Danchin, E., & Clobert, J. (2002). Public information and breeding habitat selection in a wild bird population. Science, 297(5584), 1168–1170.
Abstract: According to the “public information” hypothesis, some animal species may monitor the current reproductive success of conspecifics to assess local habitat quality and to choose their own subsequent breeding site. To test this hypothesis experimentally, we manipulated two components of public information, the mean number of offspring raised locally (“quantity”) and their condition (“quality”), in the collared flycatcher Ficedula albicollis. Immigration rate decreased with local offspring quantity but did not depend on local offspring quality, suggesting that immigrants are deprived of information regarding local quality. Conversely, emigration rate increased both when local offspring quantity or quality decreased, suggesting that residents can use both components of public information.
|
|
|
Kaseda, Y., Ogawa, H., & Khalil, A. M. (1997). Causes of natal dispersal and emigration and their effects on harem formation in Misaki feral horses. Equine Vet J, 29(4), 262–266.
Abstract: Misaki feral horses were separated into 2 herds and the difference between dispersal from natal group (natal dispersal) and dispersal from natal area (natal emigration) was studied. The causes of dispersal and emigration and their effects on harem formation were studied 1979-1994. The number of horses ranged from 73 (mature males: 8, mature females: 26, young males: 8, young females: 3, colt foals: 6, filly foals: 10 and geldings: 12) in 1979 and 86 (mature males: 14, mature females: 37, young males: 12, young females: 7, colt foals: 5, filly foals: 7 and geldings: 4) in 1994 when the present study ended. All 29 males which survived to age 4 years and 58 females which survived to age 3 years left their natal or mother groups at age one to 3. Seventeen of 22 dispersing males and 29 of 39 dispersing females left their natal groups around the birth of their siblings and significant correlations were found between natal dispersal and birth of a sibling. The number of emigrating young males correlated negatively and significantly with the total number of young males in another herd and the number of emigrating young females correlated positively and significantly with the total number of young females in the natal herd. All 13 emigrating stallions which survived to age 5 years formed stable harem groups and a significant correlation was found between natal emigration and harem formation. Twenty-three of 35 resident mares formed stable consort relations with harem stallions and a significant correlation was found between residence and formation of stable consort relations.
|
|
|
Valero, N. (2003). West Nile virus: a new challenge? Invest Clin, 44(3), 175–177.
Abstract: West Nile Virus (WNV), a member of the family Flaviviridae, was first isolated in 1937. Since the original isolation of the WNV outbreaks have occurred with increase in frequency of cases in humans and horses, apparent increase in severe human disease and high avian death rates. In 1999, 2000 and 2002 outbreaks of the WNV encephalitis were reported in horses, birds and humans from New York and Canada. Ornithophilic mosquitoes are the principal vectors of the WNV and birds of several species chiefly migrants appear to be the major introductory or amplifying host. The pattern of outbreaks in the old and new world suggests that viremic migratory birds may also contribute to movement of the virus. If so, Central America, Caribbean Islands and countries of South America including Venezuela, are in potential risk for suffering a severe outbreak for WNV, since several species of birds have populations that pass trough New York and cross the western north Atlantic or Caribbean Sea. It is important the knowledge of the ecology of WNV as well of the efficacy of control efforts in order to minimize the public health impact in these countries, where all population is susceptible to this infection.
|
|