|
Beerwerth, W., & Schurmann, J. (1969). [Contribution to the ecology of mycobacteria]. Zentralbl Bakteriol [Orig], 211(1), 58–69.
|
|
|
Bell, R. J. W., Kingston, J. K., Mogg, T. D., & Perkins, N. R. (2007). The prevalence of gastric ulceration in racehorses in New Zealand. N Z Vet J, 55(1), 13–18.
Abstract: AIM: To establish the prevalence and factors influencing the prevalence and severity of gastric ulceration in racehorses in New Zealand. METHODS: Horses (n=171) in active training for racing by trainers (n=24) located throughout New Zealand were examined using gastroscopy during 2003 and 2004. Images of the examination were recorded and reviewed, and an ordinal grade based on the severity of gastric ulceration present was assigned, using the grading system proposed by the Equine Gastric Ulcer Council (EGUC). Information about the horses such as age, breed, sex, stabling, time at pasture, pasture quality, and presence of clinical signs consistent with equine gastric ulcer syndrome (EGUS) was recorded. RESULTS: Of the 171 horses in the study, 133 (78%) were Thoroughbreds and 38 (22%) were Standardbreds. Evidence of gastric ulceration was present in 151 (88.3%) of these. Prevalence of ulceration was higher at the lesser curvature (LC) and greater curvature (GC) of the stomach than at the saccus caecus (SC; p<0.01), and ulceration was more severe at the LC than at either the GC (p=0.02) or the SC (p<0.001). The prevalence of ulceration did not differ between the two breeds (p=0.51) or between horses of differing ages (p=0.56). Gastric ulceration was evident in 125/141 (89%) horses kept at pasture for at least 4 h/day, in all 13 (100%) horses kept at pasture full time, and in 16/17 (94%) horses stabled full time. Prevalence and severity of ulceration did not differ between horses stabled full time, kept at pasture for part of the day or kept at pasture full time (p=0.33 and 0.13, respectively), and for horses grazed on pasture severity of ulceration did not vary significantly with the quality of the pasture (p=0.12). Neither prevalence (p=0.26) nor severity (p=0.49) of gastric ulceration varied significantly with duration of training. CONCLUSIONS: The prevalence of gastric ulceration in racehorses in New Zealand is similar to that reported elsewhere for horses in active training for racing. Access to pasture for some or all of the day did not appear to be protective.
|
|
|
Bradley, B. L. (1980). Animal flavor types and their specific uses in compound feeds by species and age. Fortschr Tierphysiol Tierernahr, (11), 110–122.
|
|
|
Dierenfeld, E. S. (1994). Vitamin E in exotics: effects, evaluation and ecology. J Nutr, 124(12 Suppl), 2579s–2581s.
Abstract: The pathophysiology and lesions associated with vitamin E deficiency are similar between domestic and exotic species, and circulating plasma concentrations are also similar between comparable groups. However, many ecological variables must be considered for the most relevant comparisons. Tissue values of vitamin E, apart from plasma, are unknown for most exotics. Dietary vitamin E requirements of exotic species and domestics appear to differ; based on natural foodstuff analyses and clinical observations, between 50 and 200 mg vitamin E/kg DM are necessary to prevent vitamin E deficiency, 5- to 10-fold higher than current livestock recommendations.
|
|
|
Dixon, G., Green, L. E., & Nicol, C. J. (2006). Effect of diet change on the behavior of chicks of an egg-laying strain. J Appl Anim Welf Sci, 9(1), 41–58.
Abstract: Injurious pecking has serious welfare consequences in flocks of hens kept for egg laying, especially when loose-housed. Frequent diet change is a significant risk for injurious pecking; how the mechanics of diet change influence pecking behavior is unknown. This study investigated the effect of diet change on the behavior of chicks from a laying strain. The study included a 3-week familiarity phase: 18 chick pairs received unflavored feed (Experiment 1); 18 pairs received orange oil-flavored (Experiment 2). All chicks participated in a dietary preference test (P); a diet change (DC); or a control group (C), 6 scenarios. All P chicks preferred unflavored feed. In Experiment 1, DC involved change from unflavored to orange-flavored; Experiment 2, orange- flavored to unflavored. Compared with controls, Experiment 2 DC chicks exhibited few behavioral differences; Experiment 1 DC chicks exhibited increased behavioral event rates on Days 1 and 7. They pecked significantly longer at their environment; by Day 7, they showed significantly more beak activity. There was little evidence of dietary neophobia. Change from more preferred to less preferred feed led to increased activity and redirected pecking behavior.
|
|
|
Goodwin, D., Davidson, H. P. B., & Harris, P. (2002). Foraging enrichment for stabled horses: effects on behaviour and selection. Equine Vet J, 34(7), 686–691.
Abstract: The restricted access to pasture experienced by many competition horses has been linked to the exhibition of stereotypic and redirected behaviour patterns. It has been suggested that racehorses provided with more than one source of forage are less likely to perform these patterns; however, the reasons for this are currently unclear. To investigate this in 4 replicated trials, up to 12 horses were introduced into each of 2 identical stables containing a single forage, or 6 forages for 5 min. To detect novelty effects, in the first and third trials the single forage was hay. In the second and fourth, it was the preferred forage from the preceding trial. Trials were videotaped and 12 mutually exclusive behaviour patterns compared. When hay was presented as the single forage (Trials 1 and 3), all recorded behaviour patterns were significantly different between stables; e.g. during Trial 3 in the 'Single' stable, horses looked over the stable door more frequently (P<0.001), moved for longer (P<0.001), foraged on straw bedding longer (P<0.001), and exhibited behaviour indicative of motivation to search for alternative resources (P<0.001) more frequently. When a previously preferred forage was presented as the single forage (Trials 2 and 4) behaviour was also significantly different between stables, e.g in Trial 4 horses looked out over the stable door more frequently (P<0.005) and foraged for longer in their straw bedding (P<0.005). Further study is required to determine whether these effects persist over longer periods. However, these trials indicate that enrichment of the stable environment through provision of multiple forages may have welfare benefits for horses, in reducing straw consumption and facilitating the expression of highly motivated foraging behaviour.
|
|
|
Hawkes, J., Hedges, M., Daniluk, P., Hintz, H. F., & Schryver, H. F. (1985). Feed preferences of ponies. Equine Vet J, 17(1), 20–22.
Abstract: Preference trials were conducted with mature ponies. In Trial 1, oats were compared with oats plus sucrose. Four of six pony geldings selected oats plus sucrose, but one pony demonstrated a dislike for sucrose and one selected from the bucket on the right side regardless of content. Oats, maize, barley, rye and wheat were compared in Trial 2 using six mature pony mares. Oats were the preferred grain, with maize and barley ranking second and third respectively. Wheat and rye were the least preferred. Even though the ponies demonstrated preference, the total intake at a given meal was not greatly depressed when only the less palatable grains were fed. In Trial 3, pony mares selected a diet containing 20 per cent dried distillers' grain and 80 per cent of a basal mixed diet of maize, oats, wheat bran, soybean meal, limestone and molasses over 100 per cent basal mixed diet, but selected the basal diet over diets containing 20 per cent blood meal, beet pulp or meat and bone meal and 80 per cent basal diet. They did not differentiate against diets containing 20 per cent alfalfa meal or 10 or 5 per cent meat and bone meal when the diets were compared to the basal mixed diet.
|
|
|
Hertel, J., Altmann, H. J., & Drepper, K. (1970). [Nutritional physiology studies of the horse. II. Raw nutrient studies of the gastrointestinal tract of slaughtered horses]. Z Tierphysiol Tierernahr Futtermittelkd, 26(3), 169–174.
|
|
|
Houpt, K. A., Zahorik, D. M., & Swartzman-Andert, J. A. (1990). Taste aversion learning in horses. J. Anim Sci., 68(8), 2340–2344.
Abstract: The ability of ponies to learn to avoid a relatively novel food associated with illness was tested in three situations: when illness occurred immediately after consuming a feed; when illness occurred 30 min after consuming a feed; and when illness was contingent upon eating one of three feeds offered simultaneously. Apomorphine was used to produce illness. The feeds associated with illness were corn, alfalfa pellets, sweet feed and a complete pelleted feed. The ponies learned to avoid all the fees except the complete feed when apomorphine injection immediately followed consumption of the feed. However, the ponies did not learn to avoid a feed if apomorphine was delayed 30 min after feed consumption. They could learn to avoid alfalfa pellets, but not corn, when these feeds were presented with the familiar “safe foods,” oats and soybean meal. Ponies apparently are able to learn a taste aversion, but there were constraints on this learning ability. Under the conditions of this study, they did not learn to avoid a food that made them sick long after consumption of the food, and they had more difficulty learning to avoid highly palatable feeds.
|
|
|
Husted, L., Andersen, M. S., Borggaard, O. K., Houe, H., & Olsen, S. N. (2005). Risk factors for faecal sand excretion in Icelandic horses. Equine Vet J, 37(4), 351–355.
Abstract: REASONS FOR PERFORMING STUDY: Sandy soil is often mentioned as a risk factor in the development of sand-related gastrointestinal disease (SGID) in the horse. There are other variables, but few studies confirm any of these. OBJECTIVE: To investigate soil type, pasture quality, feeding practice in the paddock, age, sex and body condition score as risk factors for sand intake in the horse. METHODS: Faeces were collected from 211 Icelandic horses on 19 different studs in Denmark together with soil samples and other potential risk factors. Sand content in faeces determined by a sand sedimentation test was interpreted as evidence of sand intake. Soil types were identified by soil analysis and significance of the data was tested using logistic analysis. RESULTS: Of horses included in the study, 56.4% showed sand in the faeces and 5.7% had more than 5 mm sand as quantified by the rectal sleeve sedimentation test. Soil type had no significant effect when tested as main effect, but there was interaction between soil type and pasture quality. Significant interactions were also found between paddock feeding practice and pasture quality. CONCLUSION: To evaluate the risk of sand intake it is important to consider 3 variables: soil type, pasture quality and feeding practice. Pasture quality was identified as a risk factor of both short and long grass in combination with sandy soil, while clay soil had the lowest risk in these combinations. Feeding practice in the paddock revealed feeding directly on the ground to be a risk factor when there was short (1-5 cm) or no grass. Also, no feeding outdoors increased the risk on pastures with short grass, while this had no effect in paddocks with no grass. More than 50% of all horses investigated in this study had sand in the faeces. POTENTIAL RELEVANCE: The identification of risk factors is an important step towards prevention of SGID. Further research is necessary to determine why some horses exhibit more than 5 mm sand in the sedimentation test and whether this is correlated with geophagic behaviour.
|
|