|
Anderson, J. R. (1995). Self-recognition in dolphins: credible cetaceans; compromised criteria, controls, and conclusions. Conscious Cogn, 4(2), 239–243.
|
|
|
Anderson, J. R., Kuwahata, H., & Fujita, K. (2007). Gaze alternation during “pointing” by squirrel monkeys (Saimiri sciureus)? Anim. Cogn., 10(2), 267–271.
Abstract: Gaze alternation (GA) is considered a hallmark of pointing in human infants, a sign of intentionality underlying the gesture. GA has occasionally been observed in great apes, and reported only anecdotally in a few monkeys. Three squirrel monkeys that had previously learned to reach toward out-of-reach food in the presence of a human partner were videotaped while the latter visually attended to the food, a distractor object, or the ceiling. Frame-by-frame video analysis revealed that, especially when reaching toward the food, the monkeys rapidly and repeatedly switched between looking at the partner's face and the food. This type of GA suggests that the monkeys were communicating with the partner. However, the monkeys' behavior was not influenced by changes in the partner's focus of attention.
|
|
|
Bard, K. A. (2007). Neonatal imitation in chimpanzees (Pan troglodytes) tested with two paradigms. Anim. Cogn., 10(2), 233–242.
Abstract: Primate species differ in their imitative performance, perhaps reflecting differences in imitative capacity. The developmentally earliest form of imitation in humans, neonatal imitation, occurs in early interactions with social partners, and may be a more accurate index of innate capacity than imitation of actions on objects, which requires more cognitive ability. This study assessed imitative capacity in five neonatal chimpanzees, within a narrow age range (7-15 days of age), by testing responses to facial and vocal actions with two different test paradigms (structured and communicative). Imitation of mouth opening was found in both paradigms. In the communicative paradigm, significant agreement was found between infant actions and demonstrations. Additionally, chimpanzees matched the sequence of three actions of the TC model, but only on the second demonstration. Newborn chimpanzees matched more modeled actions in the communicative test than in the structured paradigm. These performances of chimpanzees, at birth, are in agreement with the literature, supporting a conclusion that imitative capacity is not unique to the human species. Developmental histories must be more fully considered in the cross-species study of imitation, as there is a greater degree of innate imitative capacity than previously known. Socialization practices interact with innate and developing competencies to determine the outcome of imitation tests later in life.
|
|
|
Barry, K. L., & Goth, A. (2006). Call recognition in chicks of the Australian brush-turkey (Alectura lathami). Anim. Cogn., 9(1), 47–54.
Abstract: Most birds rely on imprinting and experience with conspecifics to learn species-specific recognition cues. Australian brush-turkeys (Alectura lathami) do not imprint and form no bonds with parents. They hatch asynchronously, disperse widely and meet juvenile conspecifics at an unpredictable age. Nevertheless, in captivity, hatchlings respond to other chicks. A recent study, which involved the use of robotic models, found that chicks prefer to approach robots that emit specific visual cues. Here, we evaluated their response to acoustic cues, which usually play an important role in avian social cognition. However, in simultaneous choice tests, neither 2-day-old nor 9-day-old chicks preferred the choice arm with playback of either chick or adult conspecific calls over the arm containing a silent loudspeaker. Chicks of both age classes, however, scanned their surroundings more during chick playback, and the response was thus consistent in younger and older chicks. We also presented the chicks with robotic models, either with or without playback of chick calls. They did not approach the calling robot more than they did the silent robot, indicating that the combination of visual and acoustic cues does not evoke a stronger response. These results will allow further comparison with species that face similar cognitive demands in the wild, such as brood parasites. Such a comparative approach, which is the focus of cognitive ecology, will enable us to further analyse the evolution and adaptive value of species recognition abilities.
|
|
|
Bergstrom, C. T., & Lachmann, M. (1998). Signaling among relatives. III. Talk is cheap. Proc. Natl. Acad. Sci. U.S.A., 95(9), 5100–5105.
Abstract: The Sir Philip Sidney game has been used by numerous authors to show how signal cost can facilitate honest signaling among relatives. Here, we demonstrate that, in this game, honest cost-free signals are possible as well, under very general conditions. Moreover, these cost-free signals are better for all participants than the previously explored alternatives. Recent empirical evidence suggests that begging is energetically inexpensive for nestling birds; this finding led some researchers to question the applicability of the costly signaling framework to nestling begging. Our results show that cost-free or inexpensive signals, as observed empirically, fall within the framework of signaling theory.
|
|
|
Brilot, B. O., & Johnstone, R. A. (2003). The limits to cost-free signalling of need between relatives. Proc Biol Sci, 270(1519), 1055–1060.
Abstract: Theoretical models have demonstrated the possibility of stable cost-free signalling of need between relatives. The stability of these cost-free equilibria depends on the indirect fitness cost of cheating and deceiving a donor into giving away resources. We show that this stability is highly sensitive to the distribution of need among signallers and receivers. In particular, cost-free signalling is likely to prove stable only if there is very large variation in need (such that the least-needy individuals stand to gain much less than the most-needy individuals from additional resources). We discuss whether these conditions are likely to be found in altricial avian breeding systems--the most intensively studied instance of signalling of need between relatives. We suggest that cost-free signalling is more likely to prove stable and will provide parents with more information during the earlier phases of chick growth, when parents can more easily meet the demands of a brood (and chicks are more likely to reach satiation). Later, informative yet cost-free signalling is unlikely to persist.
|
|
|
Cohen, J. (2007). Animal behavior. The world through a chimp's eyes (Vol. 316).
|
|
|
de Waal, F. B. M. (2003). Animal communication: panel discussion. Ann N Y Acad Sci, 1000, 79–87.
|
|
|
Drapier, M., Chauvin, C., & Thierry, B. (2002). Tonkean macaques ( Macaca tonkeana) find food sources from cues conveyed by group-mates. Anim. Cogn., 5(3), 159–165.
Abstract: It is possible that non-specialised cues transmitted by conspecifics guide animals' food search provided they have the cognitive abilities needed to read these cues. Macaques often check the mouth of their group-mates by olfactory and/or visual inspection. We investigated whether Tonkean macaques ( Macaca tonkeana) can find the location of distant food on the basis of cues conveyed by group-mates. The subjects of the study were two 6-year-old males, who belonged to a social group of Tonkean macaques raised in semi-free-ranging conditions. In a first experiment, we tested whether the subject can choose between two sites after having sniffed a partner who has just eaten food corresponding to one of the sites. We found that both subjects were able to choose the matching site significantly above the chance level. This demonstrated that Tonkean macaques are capable of delayed olfactory matching. They could associate a food location with an odour conveyed by a partner. In a second experiment, the same subjects were allowed to see their partner through a Plexiglas window. Both subjects were still able to choose the matching site, demonstrating they could rely on visual cues alone. Passive recruitment of partners appears possible in macaques. They can improve their foraging performances by finding the location of environmental resources from olfactory or visual cues conveyed by group-mates.
|
|
|
Dyer, F. C. (2002). Animal behaviour: when it pays to waggle (Vol. 419).
|
|