|
Crowley, P. H., Provencher, L., Sloane, S., Dugatkin, L. A., Spohn, B., Rogers, L., et al. (1996). Evolving cooperation: the role of individual recognition. Biosystems, 37(1-2), 49–66.
Abstract: To evaluate the role of individual recognition in the evolution of cooperation, we formulated and analyzed a genetic algorithm model (EvCo) for playing the Iterated Prisoner's Dilemma (IPD) game. Strategies compete against each other during each generation, and successful strategies contribute more of their attributes to the next generation. Each strategy is encoded on a `chromosome' that plays the IPD, responding to the sequences of most recent responses by the interacting individuals (chromosomes). The analysis reported in this paper considered different memory capabilities (one to five previous interactions), pairing continuities (pairs of individuals remain together for about one, two, five, or 1000 consecutive interactions), and types of individual recognition (recognition capability was maximal, nil, or allowed to evolve between these limits). Analysis of the results focused on the frequency of mutual cooperation in pairwise interactions (a good indicator of overall success in the IPD) and on the extent to which previous responses by the focal individual and its partner were associated with the partner's identity (individual recognition). Results indicated that a fixed, substantial amount of individual recognition could maintain high levels of mutual cooperation even at low pairing continuities, and a significant but limited capability for individual recognition evolved under selection. Recognition generally increased mutual cooperation more when the recent responses of individuals other than the current partner were ignored. Titrating recognition memory under selection using a fitness cost suggested that memory of the partner's previous responses was more valuable than memory of the focal's previous responses. The dynamics produced to date by EvCo are a step toward understanding the evolution of social networks, for which additional benefits associated with group interactions must be incorporated.
|
|
|
Dunbar, R. I. M., McAdam, M. R., & O'connell, S. (2005). Mental rehearsal in great apes (Pan troglodytes and Pongo pygmaeus) and children. Behav. Process., 69(3), 323–330.
Abstract: The ability to rehearse possible future courses of action in the mind is an important feature of advanced social cognition in humans, and the “social brain” hypothesis implies that it might also be a feature of primate social cognition. We tested two chimpanzees, six orangutans and 63 children aged 3-7 years on a set of four puzzle boxes, half of which were presented with an opportunity to observe the box before being allowed to open it (“prior view”), the others being given without an opportunity to examine the boxes before handling them (“no prior view”). When learning effects are partialled out, puzzle boxes in the “prior view” condition were opened significantly faster than boxes given in the “no prior view” condition by the children, but not by either of the great apes. The three species differ significantly in the speed with which they opened boxes in the “no prior view” condition. The three species' performance on this task was a function of relative frontal lobe volume, suggesting that it may be possible to identify quantitative neuropsychological differences between species.
|
|
|
Galloux, P., & Barrey, E. (1997). Components of the total kinetic moment in jumping horses. Equine Vet J Suppl, (23), 41–44.
Abstract: Thirty horses were filmed with a panning camera operating at 50 frames/s as they jumped over a 1.20 x 1.20 m fence. The markers of 9 joints on the horse and 7 joints on the rider were tracked in 2D with the TrackEye system. The centre of gravity and moment of inertia of each segment were calculated using a geometric algorithm and a cylindric model, respectively. The kinetic moment of each part of the horse was calculated after filtering, and resampling of data. This method showed the relative contribution of each body segment to the body overall rotation during the take-off, jump and landing phases. It was found that the trunk, hindlimbs and head-neck had the greatest influence. The coordination between the motion of the body segments allowed the horse to control its angular speed of rotation over the fence. This remained nearly constant during the airborne phase (120 +/- 5 degrees/s). During the airborne phase, the kinetic moment was constant because its value was equal to the moment of the external forces (722 +/- 125 kg x m2/s).
|
|
|
Shettleworth, S. J. (2005). Taking the best for learning. Behav. Process., 69(2), 147–9; author reply 159–63.
Abstract: Examples of how animals learn when multiple, sometimes redundant, cues are present provide further examples not considered by Hutchinson and Gigerenzer that seem to fit the principle of taking the best. “The best” may the most valid cue in the present circumstances; evolution may also produce species-specific biases to use the most functionally relevant cues.
|
|