|
Beaver, B. V. (1986). Aggressive behavior problems. Vet Clin North Am Equine Pract, 2(3), 635–644.
Abstract: Accurate diagnosis of the cause of aggression in horses is essential to determining the appropriate course of action. The affective forms of aggression include fear-induced, pain-induced, intermale, dominance, protective, maternal, learned, and redirected aggressions. Non-affective aggression includes play and sex-related forms. Irritable aggression and hypertestosteronism in mares are medical problems, whereas genetic factors, brain dysfunction, and self-mutilation are also concerns.
|
|
|
de Waal, F. B. M. (2003). Animal communication: panel discussion. Ann N Y Acad Sci, 1000, 79–87.
|
|
|
de Waal, F. B. M. (2003). Darwin's legacy and the study of primate visual communication. Ann N Y Acad Sci, 1000, 7–31.
Abstract: After Charles Darwin's The Expression of the Emotions in Man and Animals, published in 1872, we had to wait 60 years before the theme of animal expressions was picked up by another astute observer. In 1935, Nadezhda Ladygina-Kohts published a detailed comparison of the expressive behavior of a juvenile chimpanzee and of her own child. After Kohts, we had to wait until the 1960s for modern ethological analyses of primate facial and gestural communication. Again, the focus was on the chimpanzee, but ethograms on other primates appeared as well. Our understanding of the range of expressions in other primates is at present far more advanced than that in Darwin's time. A strong social component has been added: instead of focusing on the expressions per se, they are now often classified according to the social situations in which they typically occur. Initially, quantitative analyses were sequential (i.e., concerned with temporal associations between behavior patterns), and they avoided the language of emotions. I will discuss some of this early work, including my own on the communicative repertoire of the bonobo, a close relative of the chimpanzee (and ourselves). I will provide concrete examples to make the point that there is a much richer matrix of contexts possible than the common behavioral categories of aggression, sex, fear, play, and so on. Primate signaling is a form of negotiation, and previous classifications have ignored the specifics of what animals try to achieve with their exchanges. There is also increasing evidence for signal conventionalization in primates, especially the apes, in both captivity and the field. This process results in group-specific or “cultural” communication patterns.
|
|
|
Hausberger, M., Bruderer, C., Le Scolan, N., & Pierre, J. - S. (2004). Interplay between environmental and genetic factors in temperament/personality traits in horses (Equus caballus). J Comp Psychol, 118(4), 434–446.
Abstract: The aim of the present study was to broach the question of the relative influence of different genetic and environmental factors on different temperament/personality traits of horses (Equus caballus). The researchers submitted 702 horses to standardized experimental tests and investigated 9 factors, either genetic or environmental. Genetic factors, such as sire or breed, seemed to influence more neophobic reactions, whereas environmental factors, such as the type of work, seemed to play a more dominant role in reactions to social separation or learning abilities. Additive effects were evident, showing how environmental factors may modulate behavioral traits. This study constitutes a first step toward understanding the relative weights of genetic factors and how the environment may intervene in determining individual behavioral characteristics.
|
|
|
Kalin, N. H., & Shelton, S. E. (2003). Nonhuman primate models to study anxiety, emotion regulation, and psychopathology. Ann N Y Acad Sci, 1008, 189–200.
Abstract: This paper demonstrates that the rhesus monkey provides an excellent model to study mechanisms underlying human anxiety and fear and emotion regulation. In previous studies with rhesus monkeys, stable, brain, endocrine, and behavioral characteristics related to individual differences in anxiety were found. It was suggested that, when extreme, these features characterize an anxious endophenotype and that these findings in the monkey are particularly relevant to understanding adaptive and maladaptive anxiety responses in humans. The monkey model is also relevant to understanding the development of human psychopathology. For example, children with extremely inhibited temperament are at increased risk to develop anxiety disorders, and these children have behavioral and biological alterations that are similar to those described in the monkey anxious endophenotype. It is likely that different aspects of the anxious endophenotype are mediated by the interactions of limbic, brain stem, and cortical regions. To understand the brain mechanisms underlying adaptive anxiety responses and their physiological concomitants, a series of studies in monkeys lesioning components of the neural circuitry (amygdala, central nucleus of the amygdala and orbitofrontal cortex) hypothesized to play a role are currently being performed. Initial findings suggest that the central nucleus of the amygdala modulates the expression of behavioral inhibition, a key feature of the endophenotype. In preliminary FDG positron emission tomography (PET) studies, functional linkages were established between the amygdala and prefrontal cortical regions that are associated with the activation of anxiety.
|
|
|
Laister, S., Stockinger, B., Regner, A. - M., Zenger, K., Knierim, U., & Winckler, C. (2011). Social licking in dairy cattle--Effects on heart rate in performers and receivers. Appl. Anim. Behav. Sci., 130(3-4), 81–90.
Abstract: Using heart rate (HR) measurements we investigated whether potential calming effects of social licking were evident for both active (performers) and passive (receivers) licking partners. A HR decline was assumed to indicate relaxation and thus the experience of positive emotions. Effects of the licking category (spontaneous, solicited), the animals' basic activity (standing, lying) and the licked body region (head, neck, rest) were also considered. Two studies (A, B) were carried out in the same loose housed Austrian Simmental dairy herd. HR was recorded in up to 20 focal animals on 16 and 18 days, respectively. Using either direct observations (A) or video recordings (B), social licking interactions were continuously observed. The cow's basic activity was recorded using scan sampling at 5 min intervals. Linear mixed effects models were applied separately for Study A and B in order to compare the mean HR of the licking bouts with the mean of the respective 5 min pre- and post-licking periods. In receivers we found a significant calming effect in terms of a HR decline during allogrooming in both studies (A: -1.3 beats per minute, B: -1.1 bpm). This effect was more pronounced when animals were standing (A/B: -2.4 bpm/-3.8 bpm). However, it was not affected by the licked body region. In dairy cows performing social licking, we did not find an overall calming effect. On the contrary, in Study B, HR significantly increased during licking in lying performers (+2.5 bpm). This reaction was even stronger, when licking was directed to the receivers' head (+3.5 bpm) or neck (+3.0 bpm) as compared to the rest of the body (+1.4 bpm). The licking category had no effect on HR changes during the licking events. Our findings suggest that relaxation effects induced by social licking differ between performers and receivers and are affected by the cows' basic activity. In receivers, there were clear indications of a calming effect implying the experience of positive affective states. In performers, such calming effects during social licking were not identified.
|
|
|
Larose, C., Richard-Yris, M. - A., Hausberger, M., & Rogers, L. J. (2006). Laterality of horses associated with emotionality in novel situations. Laterality, 11(4), 355–367.
Abstract: We have established that lateral biases are characteristic of visual behaviour in 65 horses. Two breeds, Trotters and French Saddlebreds aged 2 to 3, were tested on a novel object test. The main finding was a significant correlation between emotionality index and the eye preferred to view the novel stimulus: the higher the emotionality, the more likely that the horse looked with its left eye. The less emotive French Saddlebreds, however, tended to glance at the object using the right eye, a tendency that was not found in the Trotters, although the emotive index was the same for both breeds. The youngest French Saddlebreds did not show this trend. These results are discussed in relation to the different training practices for the breeds and broader findings on lateralisation in different species.
|
|
|
Löckener, S., Reese, S., Erhard, M., & Wöhr, A. - C. (2016). Pasturing in herds after housing in horseboxes induces a positive cognitive bias in horses. Journal of Veterinary Behavior: Clinical Applications and Research, 11, 50–55.
Abstract: Abstract Horses are kept in various housing systems, for example, with conspecifics in horse pens or singly in horseboxes, with or without pasturing. To provide appropriate living conditions for horses, it is necessary to know in which conditions they feel well or unwell. Here, a cognitive bias assessment provides information about an individual's affective state and its well-being. When a positive affective state prevails, animals tend to judge optimistically in ambiguous situations. When a negative affective state prevails, animals judge pessimistically in unclear situations. In the present study, we trained horses on a spatial discrimination task and evaluated their judgment of ambiguous locations when they had access to pastures and contact to conspecifics versus when they were kept singly in horseboxes. Ten days of pasturing and contact with conspecifics after being kept singly in horseboxes for 6 months induced a positive cognitive bias in the horses. We suggest that horses need to act out certain behaviors like exploration, social interaction, play, or grooming to fulfill their needs. After a time in which they were individually in horseboxes without pasturing and access to the herd, they seem to have a positive cognitive bias once they have access to pastures and conspecifics. This positive cognitive bias effect seems to disappear over time, as horses appear to adapt to the circumstances.
|
|
|
Panksepp, J. (2005). Affective consciousness: Core emotional feelings in animals and humans. Conscious Cogn, 14(1), 30–80.
Abstract: The position advanced in this paper is that the bedrock of emotional feelings is contained within the evolved emotional action apparatus of mammalian brains. This dual-aspect monism approach to brain-mind functions, which asserts that emotional feelings may reflect the neurodynamics of brain systems that generate instinctual emotional behaviors, saves us from various conceptual conundrums. In coarse form, primary process affective consciousness seems to be fundamentally an unconditional “gift of nature” rather than an acquired skill, even though those systems facilitate skill acquisition via various felt reinforcements. Affective consciousness, being a comparatively intrinsic function of the brain, shared homologously by all mammalian species, should be the easiest variant of consciousness to study in animals. This is not to deny that some secondary processes (e.g., awareness of feelings in the generation of behavioral choices) cannot be evaluated in animals with sufficiently clever behavioral learning procedures, as with place-preference procedures and the analysis of changes in learned behaviors after one has induced re-valuation of incentives. Rather, the claim is that a direct neuroscientific study of primary process emotional/affective states is best achieved through the study of the intrinsic (“instinctual”), albeit experientially refined, emotional action tendencies of other animals. In this view, core emotional feelings may reflect the neurodynamic attractor landscapes of a variety of extended trans-diencephalic, limbic emotional action systems-including SEEKING, FEAR, RAGE, LUST, CARE, PANIC, and PLAY. Through a study of these brain systems, the neural infrastructure of human and animal affective consciousness may be revealed. Emotional feelings are instantiated in large-scale neurodynamics that can be most effectively monitored via the ethological analysis of emotional action tendencies and the accompanying brain neurochemical/electrical changes. The intrinsic coherence of such emotional responses is demonstrated by the fact that they can be provoked by electrical and chemical stimulation of specific brain zones-effects that are affectively laden. For substantive progress in this emerging research arena, animal brain researchers need to discuss affective brain functions more openly. Secondary awareness processes, because of their more conditional, contextually situated nature, are more difficult to understand in any neuroscientific detail. In other words, the information-processing brain functions, critical for cognitive consciousness, are harder to study in other animals than the more homologous emotional/motivational affective state functions of the brain.
|
|
|
Proops, L., Grounds, K., Smith, A. V., & McComb, K. (2018). Animals Remember Previous Facial Expressions that Specific Humans Have Exhibited. Current Biology, 28(9), 1428–1432.e4.
Abstract: Summary For humans, facial expressions are important social signals, and how we perceive specific individuals may be influenced by subtle emotional cues that they have given us in past encounters. A wide range of animal species are also capable of discriminating the emotions of others through facial expressions [1, 2, 3, 4, 5], and it is clear that remembering emotional experiences with specific individuals could have clear benefits for social bonding and aggression avoidance when these individuals are encountered again. Although there is evidence that non-human animals are capable of remembering the identity of individuals who have directly harmed them [6, 7], it is not known whether animals can form lasting memories of specific individuals simply by observing subtle emotional expressions that they exhibit on their faces. Here we conducted controlled experiments in which domestic horses were presented with a photograph of an angry or happy human face and several hours later saw the person who had given the expression in a neutral state. Short-term exposure to the facial expression was enough to generate clear differences in subsequent responses to that individual (but not to a different mismatched person), consistent with the past angry expression having been perceived negatively and the happy expression positively. Both humans were blind to the photograph that the horses had seen. Our results provide clear evidence that some non-human animals can effectively eavesdrop on the emotional state cues that humans reveal on a moment-to-moment basis, using their memory of these to guide future interactions with particular individuals.
|
|