|
Dirikolu, L., Lehner, A. F., Karpiesiuk, W., Hughes, C., Woods, W. E., Boyles, J., et al. (2003). Detection, quantification, metabolism, and behavioral effects of selegiline in horses. Vet Ther, 4(3), 257–268.
Abstract: Selegiline ([R]-[-]N,alpha-dimethyl-N-2- propynylphenethylamine or l-deprenyl), an irreversible inhibitor of monoamine oxidase, is a classic antidyskinetic and antiparkinsonian agent widely used in human medicine both as monotherapy and as an adjunct to levodopa therapy. Selegiline is classified by the Association of Racing Commissioners International (ARCI) as a class 2 agent, and is considered to have high abuse potential in racing horses. A highly sensitive LC/MS/MS quantitative analytical method has been developed for selegiline and its potential metabolites amphetamine and methamphetamine using commercially available deuterated analogs of these compounds as internal standards. After administering 40 mg of selegiline orally to two horses, relatively low (<60 ng/ml) concentrations of parent selegiline, amphetamine, and methamphetamine were recovered in urine samples. However, relatively high urinary concentrations of another selegiline metabolite were found, tentatively identified as N- desmethylselegiline. This metabolite was synthesized and found to be indistinguishable from the new metabolite recovered from horse urine, thereby confirming the chemical identity of the equine metabolite. Additionally, analysis of urine samples from four horses dosed with 50 mg of selegiline confirmed that N-desmethylselegiline is the major urinary metabolite of selegiline in horses. In related behavior studies, p.o. and i.v. administration of 30 mg of selegiline produced no significant changes in either locomotor activities or heart rates.
|
|
|
Hodgson, D., Howe, S., Jeffcott, L., Reid, S., Mellor, D., & Higgins, A. (2005). Effect of prolonged use of altrenogest on behaviour in mares (Vol. 169).
Abstract: Erratum in:
Vet J. 2005 May;169(3):321.
Corrected and republished in:
Vet J. 2005 May;169(3):322-5.
Oral administration of altrenogest for oestrus suppression in competition horses is believed to be widespread in some equestrian disciplines, and can be administered continuously for several months during a competition season. To examine whether altrenogest has any anabolic or other potential performance enhancing properties that may give a horse an unfair advantage, we examined the effect of oral altrenogest (0.044 mg/kg), given daily for a period of eight weeks, on social hierarchy, activity budget, body-mass and body condition score of 12 sedentary mares. We concluded that prolonged oral administration of altrenogest at recommended dose rates to sedentary mares resulted in no effect on dominance hierarchies, body mass or condition score.
|
|
|
Houpt, T. R., & Houpt, K. A. (1971). Nitrogen conservation by ponies fed a low -protein ration. Am J Vet Res, 32(4), 579–588.
|
|
|
Machnik, M., Hegger, I., Kietzmann, M., Thevis, M., Guddat, S., & Schanzer, W. (2007). Pharmacokinetics of altrenogest in horses. J Vet Pharmacol Ther, 30(1), 86–90.
Abstract: The Federation Equestre Internationale has permitted the use of altrenogest in mares for the control of oestrus. However, altrenogest is also suspicious to misuse in competition horses for its potential anabolic effects and suppression of typical male behaviour, and thus is a controlled drug. To investigate the pharmacokinetics of altrenogest in horses we conducted an elimination study. Five oral doses of 44 mug/kg altrenogest were administered to 10 horses at a dose interval of 24 h. Following administration blood and urine samples were collected at appropriate intervals. Altrenogest concentrations were measured by liquid chromatography-tandem mass spectrometry. The plasma levels of altrenogest reached maximal concentrations of 23-75 ng/mL. Baseline values were achieved within 3 days after the final administration. Urine peak concentrations of total altrenogest ranged from 823 to 3895 ng/mL. Twelve days after the final administration concentrations were below the limit of detection (ca 2 ng/mL).
|
|
|
Nicol, C. J., Adachi, M., Akiyama, T. E., & Gonzalez, F. J. (2005). PPARgamma in endothelial cells influences high fat diet-induced hypertension. Am J Hypertens, 18(4 Pt 1), 549–556.
Abstract: BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands improve human hypertension. However, the mechanism and site of this effect remains unknown, confounded by PPARgamma expression in many cell types, including endothelial cells (ECs). METHODS: To evaluate the vascular role of PPARgamma we used a conditional null mouse model. Specific disruption of PPARgamma in ECs was created by crossing Tie2-Cre+ transgenic (T2T+) and PPARgamma-floxed (fl/fl) mice to generate PPARgamma (fl/fl)T2T+ (PPARgamma E-null) mice. Conscious 8- to 12-week-old congenic PPARgamma (fl/fl)Cre- (wild type) and PPARgamma E-null mice were examined for changes in systolic blood pressure (BP) and heart rate (HR), untreated, after 2 months of salt-loading (drinking water), and after treatment for 3 months with high fat (HF) diet alone or supplemented during the last 2 weeks with rosiglitazone (3 mg/kg/d). RESULTS: Untreated PPARgamma E-nulls were phenotypically indistinguishable from wild-type littermates. However, compared to similarly treated wild types, HF-treated PPARgamma E-nulls had significantly elevated systolic BP not seen after normal diet or salt-loading. Despite sex-dependent baseline differences, salt-loaded and HF-treated PPARgamma E-nulls of either sex had significantly elevated HR versus wild types. Interestingly, rosiglitazone improved serum insulin levels, but not HF diet-induced hypertension, in PPARgamma E-null mice. CONCLUSIONS: These results suggest that PPARgamma in ECs not only is an important regulator of hypertension and HR under stressed conditions mimicking those arising in type 2 diabetics, but also mediates the antihypertensive effects of rosiglitazone. These data add evidence supporting a beneficial role for PPARgamma-specific ligands in the treatment of hypertension, and suggest therapeutic strategies targeting ECs may prove useful.
|
|