|
Flauger, B., Krueger, K., Gerhards, H., & Möstl, E. (2010). Simplified method to measure glucocorticoid metabolites in faeces of horses. Vet Res Comm, 34(2), 185–195.
Abstract: Glucocorticoids or their metabolites can be measured in several body fluids or excreta, including plasma, saliva, urine and faeces. In recent years the measurement of glucocorticoid metabolites (GCMs) in faeces has gained increasing attention, because of its suitability for wild populations. In horses, however, the group-specific enzyme immunoassay described so far has a limited racticability due to its complex extraction procedure. Therefore, we tested the applicability of
other enzyme immunoassays for glucocorticoid metabolites. The present study clearly proved that an enzyme immunoassay (EIA) for 11-oxoetiocholanolone using 11-oxoetiocholanolone-17-CMO: BSA (3α,11-oxo-A EIA) as antigen showed high amounts of immunoreactive substances. Therefore it was possible to use just a small amount of the supernatant of a methanolic suspension of faeces. The results
correlated well with the already described method for measuring GCMs in horse faeces, i.e. analysing the samples with an EIA after a two step clean up procedure of the samples (Merl et al. 2000). In addition, the 3α,11-oxo-A EIA has the advantage of providing a bigger difference between baseline values and peak values after ACTH stimulation. The new assay increased the accuracy of the test,
lowered the expenses per sample, and storing samples at room temperature after collection was less critical than with other assays investigated in our study. This is a big advantage both in the field of wildlife management of equids and in the field of equestrian sports and it shows the importance of choosing an assay which is in good accordance with the metabolites excreted in a given species.
|
|
|
Peeters, M., Sulon, J., Beckers, J. - F., Ledoux, D., & Vandenheede, M. (2011). Comparison between blood serum and salivary cortisol concentrations in horses using an adrenocorticotropic hormone challenge. Equine Veterinary Journal, 43(4), 487–493.
Abstract: Reasons for performing study: In horses, serum cortisol concentration is considered to provide an indirect measurement of stress. However, it includes both free and bound fractions. The sampling method is also invasive and often stressful. This is not the case for salivary cortisol, which is collected using a more welfare-friendly method and represents a part of the free cortisol fraction, which is the biologically active form. Objectives: To compare salivary and serum cortisol assays in horses, in a wide range of concentrations, using an adrenocorticotropic hormone (ACTH) stimulation test, in order to validate salivary cortisol for stress assessment in horse. Methods: In 5 horses, blood samples were drawn using an i.v. catheter. Saliva samples were taken using swabs. Cortisol was assayed by radioimmunoassay. All data were treated with a regression method, which pools and analyses data from multiple subjects for linear analysis. Results: Mean ± s.d. cortisol concentrations measured at rest were 188.81 ± 51.46 nmol/l in serum and 1.19 ± 0.54 nmol/l in saliva. They started increasing immediately after ACTH injection and peaks were reached after 96 ± 16.7 min in serum (356.98 ± 55.29 nmol/l) and after 124 ± 8.9 min in saliva (21.79 ± 7.74 nmol/l, P<0.05). Discharge percentages were also different (225% in serum and 2150% in saliva, P<0.05). Correlation between serum and salivary cortisol concentrations showed an adjusted r2= 0.80 (P<0.001). The strong link between serum and salivary cortisol concentrations was also estimated by a regression analysis. Conclusions: The reliability of both RIAs and regression found between serum and salivary cortisol concentrations permits the validation of saliva-sampling as a noninvasive technique for cortisol level assessment in horses.
|
|