|
Crystal, J. D. (1999). Systematic nonlinearities in the perception of temporal intervals. J Exp Psychol Anim Behav Process, 25(1), 3–17.
Abstract: Rats judged time intervals in a choice procedure in which accuracy was maintained at approximately 75% correct. Sensitivity to time (d') was approximately constant for short durations 2.0-32.0 s with 1.0- or 2.0-s spacing between intervals (n = 5 in each group, Experiment 1), 2.0-50.0 s with 2.0-s spacing (n = 2, Experiment 1), and 0.1-2.0 s with 0.1- or 0.2-s spacing (n = 6 in each group, Experiment 2). However, systematic departures from average sensitivity were observed, with local maxima in sensitivity at approximately 0.3, 1.2, 10.0, 24.0, and 36.0 s. Such systematic departures from an approximately constant d' are predicted by a connectionist theory of time with multiple oscillators and may require a modification of the linear timing hypothesis of scalar timing theory.
|
|
|
Fairhurst, S., Gallistel, C. R., & Gibbon, J. (2003). Temporal landmarks: proximity prevails. Anim. Cogn., 6(2), 113–120.
Abstract: Subjects in conditioning experiments time their conditioned responses relative to the onsets of the conditioned stimuli (CSs). These onsets are temporal landmarks, by reference to which subjects may estimate the location of the unconditioned stimulus (US) in time. In a serial compound conditioning paradigm, a long duration CS comes on first, followed later by a second shorter CS, creating both a long-range and a short-range predictor of the US. We ask whether displacing the short-range predictor relative to the long-range predictor causes subjects to strike a compromise between the different temporal locations predicted by the two CSs. In three experiments with pigeons, we varied the training conditions so as to favor or militate against this outcome. However, in all conditions, there was no compromise; after the onset of the displaced short-range CS, the timing of conditioned responding was governed by it alone. This result contrasts with the compromises that are seen when the feeding time predicted by a CS is put in conflict with the time predicted by the circadian clock, and with the similar compromises sometimes seen when a nearby spatial landmark is displaced relative to a larger spatial context.
|
|
|
Kaiser, D. H., Zentall, T. R., & Neiman, E. (2002). Timing in pigeons: effects of the similarity between intertrial interval and gap in a timing signal. J Exp Psychol Anim Behav Process, 28(4), 416–422.
Abstract: Previous research suggests that when a fixed interval is interrupted (known as the gap procedure), pigeons tend to reset memory and start timing from 0 after the gap. However, because the ambient conditions of the gap typically have been the same as during the intertrial interval (ITI), ambiguity may have resulted. In the present experiment, the authors found that when ambient conditions during the gap were similar to the ITI, pigeons tended to reset memory, but when ambient conditions during the gap were different from the ITI, pigeons tended to stop timing, retain the duration of the stimulus in memory, and add to that time when the stimulus reappeared. Thus, when the gap was unambiguous, pigeons timed accurately.
|
|
|
Nallan, G. B., Pace, G. M., McCoy, D. F., & Zentall, T. R. (1979). Temporal parameters of the feature positive effect. Am J Psychol, 92(4), 703–710.
Abstract: Trial duration and intertrial interval duration were parametrically varied between groups of pigeons exposed to a discrimination involving the presence vs. the absence of a dot. Half the groups received the dot as the positive stimulus (feature positive groups) and half the groups received the dot as the negative stimulus (feature negative groups). Faster learning by the feature positive birds (feature positive effect) was found when the trial duration was short (5 sec) regardless of whether the intertrial interval was short (5 sec) or long (30 sec). No evidence for a feature positive effect was found when the trial duration was long (30 sec) regardless of the length of the intertrial interval (30 sec or 180 sec). The results suggest that short trial duration is a necessary condition for the occurrence of the feature positive effect, and neither intertrial interval nor trial duration/intertrial interval ratio are important for its occurrence. The suggestion that mechanisms underlying the feature positive effect and autoshaping might be similar was not supported by the present experiment since the trial duration/intertrial interval ration parameter appears to play an important role in autoshaping but not the feature positive effect.
|
|
|
Zentall, T. R. (2005). Timing, memory for intervals, and memory for untimed stimuli: the role of instructional ambiguity. Behav. Process., 70(3), 209–222.
Abstract: Theories of animal timing have had to account for findings that the memory for the duration of a timed interval appears to be dramatically shorted within a short time of its termination. This finding has led to the subjective shortening hypothesis and it has been proposed to account for the poor memory that animals appear to have for the initial portion of a timed interval when a gap is inserted in the to-be-timed signal. It has also been proposed to account for the poor memory for a relatively long interval that has been discriminated from a shorter interval. I suggest here a simpler account in which ambiguity between the gap or retention interval and the intertrial interval results in resetting the clock, rather than forgetting the interval. The ambiguity hypothesis, together with a signal salience mechanism that determines how quickly the clock is reset at the start of the intertrial interval can account for the results of the reported timing experiments that have used the peak procedure. Furthermore, instructional ambiguity rather than memory loss may account for the results of many animal memory experiments that do not involve memory for time.
|
|
|
Zentall, T. R. (2006). Mental time travel in animals: a challenging question. Behav. Process., 72(2), 173–183.
Abstract: Humans have the ability to mentally recreate past events (using episodic memory) and imagine future events (by planning). The best evidence for such mental time travel is personal and thus subjective. For this reason, it is particularly difficult to study such behavior in animals. There is some indirect evidence, however, that animals have both episodic memory and the ability to plan for the future. When unexpectedly asked to do so, animals can report about their recent past experiences (episodic memory) and they also appear to be able to use the anticipation of a future event as the basis for a present action (planning). Thus, the ability to imagine past and future events may not be uniquely human.
|
|
|
Zentall, T. R., Klein, E. D., & Singer, R. A. (2004). Evidence for detection of one duration sample and default responding to other duration samples by pigeons may result from an artifact of retention-test ambiguity. J Exp Psychol Anim Behav Process, 30(2), 129–134.
Abstract: S. C. Gaitan and J. T. Wixted (2000) proposed that when pigeons are trained on a conditional discrimination to associate 1 duration sample with 1 comparison and 2 other duration samples with a 2nd comparison, they detect only the single duration, and on trials involving either of the 2 other duration samples, they respond to the other comparison by default. In 2 experiments, the authors show instead that pigeons lend to treat the retention intervals (such as those used by Gaitan and Wixted) as intertrial intervals, and thus, they tend to treat all trials with a delay as 0-s sample trials. The authors tested this hypothesis by showing that divergent retention functions do not appear when the retention interval is discriminably different from the intertrial interval.
|
|