|
Barton, M. D., & Hughes, K. L. (1984). Ecology of Rhodococcus equi. Vet Microbiol, 9(1), 65–76.
Abstract: A selective broth enrichment technique was used to study the distribution of Rhodococcus equi in soil and grazing animals. Rhodococcus equi was isolated from 54% of soils examined and from the gut contents, rectal faeces and dung of all grazing herbivorous species examined. Rhodococcus equi was not isolated from the faeces or dung of penned animals which did not have access to grazing. The isolation rate from dung was much higher than from other samples and this was found to be due to the ability of R. equi to multiply more readily in dung. Delayed hypersensitivity tests were carried out on horses, sheep and cattle, but only horses reacted significantly. The physiological characteristics of R. equi and the nature of its distribution in the environment suggested that R. equi is a soil organism.
|
|
|
Beerwerth, W., & Schurmann, J. (1969). [Contribution to the ecology of mycobacteria]. Zentralbl Bakteriol [Orig], 211(1), 58–69.
|
|
|
Chmel, L., Hasilikova, A., Hrasko, J., & Vlacilikova, A. (1972). The influence of some ecological factors on keratinophilic fungi in the soil. Sabouraudia, 10(1), 26–34.
|
|
|
Hughes, K. L., & Sulaiman, I. (1987). The ecology of Rhodococcus equi and physicochemical influences on growth. Vet Microbiol, 14(3), 241–250.
Abstract: Growth of Rhodococcus equi was studied in vitro. Optimal growth occurred under aerobic conditions between pH 7.0 and 8.5, at 30 degrees C. R. equi survived better in a neutral soil (pH 7.3) than it did in two acid soils (pH less than 5.5). It grew substantially better in soils enriched with faeces than in soils alone. Simple organic acids in horse dung, especially acetate and propionate, appear to be important in supporting growth of R. equi in the environment. The ecology of R. equi can be best explained by an environmental cycle allowing its proliferation in dung, influenced by management, grazing behaviour and prevailing climatic conditions. Preventive measures should be aimed at reducing or avoiding focal areas of faecal contamination in the environment.
|
|
|
Menges, R. W., Furcolow, M. L., Selby, L. A., Habermann, R. T., & Smith, C. D. (1967). Ecologic studies of histoplasmosis. Am J Epidemiol, 85(1), 108–119.
|
|
|
Takai, S., Narita, K., Ando, K., & Tsubaki, S. (1986). Ecology of Rhodococcus (Corynebacterium) equi in soil on a horse-breeding farm. Vet Microbiol, 12(2), 169–177.
Abstract: The ecology of Rhodococcus (Corynebacterium) equi in soil was studied on a horse-breeding farm. R. equi was cultured from soil at a depth of 0, 10, and 20 cm on the six sites of the farm at monthly intervals for 10 months from March to December of 1983. The highest numbers of R. equi were found in the surface soil. The mean number of bacteria in soil samples at every depth increased remarkably from 0 or 10(2) to 10(4) colony-forming units (CFU) g-1 of soil in the middle of April, and later decreased gradually. R. equi inoculated into six soil exudate broths prepared from surface soils at separate sites yielded suspensions with different optical densities, indicating differences in growth. The distribution of serotypes in the soil was similar to that in the horses on the farm. These findings indicated that R. equi could multiply in the soil and flourish in the cycle existing between horses and their soil environment.
|
|