|
Fragaszy, D., & Visalberghi, E. (2004). Socially biased learning in monkeys. Learn Behav, 32(1), 24–35.
Abstract: We review socially biased learning about food and problem solving in monkeys, relying especially on studies with tufted capuchin monkeys (Cebus apella) and callitrichid monkeys. Capuchin monkeys most effectively learn to solve a new problem when they can act jointly with an experienced partner in a socially tolerant setting and when the problem can be solved by direct action on an object or substrate, but they do not learn by imitation. Capuchin monkeys are motivated to eat foods, whether familiar or novel, when they are with others that are eating, regardless of what the others are eating. Thus, social bias in learning about foods is indirect and mediated by facilitation of feeding. In most respects, social biases in learning are similar in capuchins and callitrichids, except that callitrichids provide more specific behavioral cues to others about the availability and palatability of foods. Callitrichids generally are more tolerant toward group members and coordinate their activity in space and time more closely than capuchins do. These characteristics support stronger social biases in learning in callitrichids than in capuchins in some situations. On the other hand, callitrichids' more limited range of manipulative behaviors, greater neophobia, and greater sensitivity to the risk of predation restricts what these monkeys learn in comparison with capuchins. We suggest that socially biased learning is always the collective outcome of interacting physical, social, and individual factors, and that differences across populations and species in social bias in learning reflect variations in all these dimensions. Progress in understanding socially biased learning in nonhuman species will be aided by the development of appropriately detailed models of the richly interconnected processes affecting learning.
|
|
|
Henning, J. M., & Zentall, T. R. (1981). Imitation, social facilitation, and the effects of ACTH 4-10 on rats' bar-pressing behavior. Am J Psychol, 94(1), 125–134.
Abstract: The effects of ACTH 4-10 on rats' imitation learning was examined during the acquisition and extinction of a bar-press response for water reinforcement. Rats were exposed to either a bar-pressing conspecific (OB), an experimentally naive conspecific (ON), or an empty box (OE) during bar-press acquisition. In a factorial design, each rat was then exposed to one of the same three conditions during extinction. An 80 mcg dose of ACTH 4-10 was administered to half of the rats in each group prior to observation. Performance differences during acquisition were generally small, but significant performance differences during extinction were found. Social facilitation was indicated by the finding that rats extinguished in the presence of a conspecific exhibited significantly greater resistance to extinction than rats extinguished in the presence of an empty box. An imitation effect was also found. Rats that observed a bar-pressing conspecific during both acquisition and extinction (group OB-OB) showed significantly greater resistance top extinction than did groups OB-ON, CB-OE, or OE-OE. There were no significant effects of the hormone, however, relative to saline controls.
|
|
|
Nicol, C. J. (2004). Development, direction, and damage limitation: social learning in domestic fowl. Learn Behav, 32(1), 72–81.
Abstract: This review highlights two areas of particular interest in the study of social learning in fowl. First, the role of social learning in the development of feeding and foraging behavior in young chicks and older birds is described. The role of the hen as a demonstrator and possible teacher is considered, and the subsequent social influence of brood mates and other companions on food avoidance and food preference learning is discussed. Second, the way in which work on domestic fowl has contributed to an understanding of the importance of directed social learning is examined. The well-characterized hierarchical social organization of small chicken flocks has been used to design studies which demonstrate that the probability of social transmission is strongly influenced by social relationships between birds. The practical implications of understanding the role of social learning in the spread of injurious behaviors in this economically important species are briefly considered.
|
|
|
Whiten, A., Horner, V., Litchfield, C. A., & Marshall-Pescini, S. (2004). How do apes ape? Learn. Behav., 32(1), 36–52.
Abstract: In the wake of telling critiques of the foundations on which earlier conclusions were based, the last 15 years have witnessed a renaissance in the study of social learning in apes. As a result, we are able to review 31 experimental studies from this period in which social learning in chimpanzees, gorillas, and orangutans has been investigated. The principal question framed at the beginning of this era, Do apes ape? has been answered in the affirmative, at least in certain conditions. The more interesting question now is, thus, How do apes ape? Answering this question has engendered richer taxonomies of the range of social-learning processes at work and new methodologies to uncover them. Together, these studies suggest that apes ape by employing a portfolio of alternative social-learning processes in flexibly adaptive ways, in conjunction with nonsocial learning. We conclude by sketching the kind of decision tree that appears to underlie the deployment of these alternatives.
|
|
|
Zentall, T. R. (2004). Action imitation in birds. Learn Behav, 32(1), 15–23.
Abstract: Action imitation, once thought to be a behavior almost exclusively limited to humans and the great apes, surprisingly also has been found in a number of bird species. Because imitation has been viewed by some psychologists as a form of intelligent behavior, there has been interest in how it is distributed among animal species. Although the mechanisms responsible for action imitation are not clear, we are now at least beginning to understand the conditions under which it occurs. In this article, I try to identify and differentiate the various forms of socially influenced behavior (species-typical social reactions, social effects on motivation, social effects on perception, socially influenced learning, and action imitation) and explain why it is important to differentiate imitation from other forms of social influence. I also examine some of the variables that appear to be involved in the occurrence of imitation. Finally, I speculate about why a number of bird species, but few mammal species, appear to imitate.
|
|