|
Ferkin, M. H., Pierce, A. A., Sealand, R. O., & Delbarco-Trillo, J. (2005). Meadow voles, Microtus pennsylvanicus, can distinguish more over-marks from fewer over-marks. Anim. Cogn., 8(3), 182–189.
Abstract: Is it possible that voles have a sense of number? To address this question, we determined whether voles discriminate between two different scent-marking individuals and identify the individual whose scent marks was on top more often than the other individual. We tested whether voles show a preference for the individual whose scent marks was on top most often. If so, the simplest explanation was that voles can make a relative size judgement-such as distinguishing an area containing more of one individual's over-marks as compared to less of another individual's over-marks. We found that voles respond preferentially to the donor that provided a greater number of over-marks as compared to the donor that provided a lesser number of over-marks. Thus, we concluded that voles might display the capacity for relative numerousness. Interestingly, female voles were better able than male voles to distinguish between small differences in the relative number of over-marks by the two scent donors.
|
|
|
Gazit, I., Goldblatt, A., & Terkel, J. (2005). The role of context specificity in learning: the effects of training context on explosives detection in dogs. Anim. Cogn., 8(3), 143–150.
Abstract: Various experiments revealed that if an animal learns a stimulus-response-reinforcer relationship in one context and is then tested in another context there is usually a lessening of stimulus control, and the same discriminative stimuli that reliably controlled the behavior in the first context will have less effect in the new context. This reduction in performance is known as the “context shift effect.” The effect of changing context on the probability of detecting explosives was investigated in seven highly trained explosives detection dogs (EDDs). In experiment 1 the dogs were trained alternately on path A, which always had five hidden explosives, and on a very similar path B, which never had any explosives. Within a few sessions the dogs showed a significant decrease in search behavior on path B, but not on path A. In experiment 2 the same dogs were trained only on path B with a target density of one explosive hidden every 4th day. The probability of the dogs now detecting the explosive was found to be significantly lower than in experiment 1. In experiment 3 the effect of the low target density as used in experiment 2 was investigated on a new but very similar path C. Both the detection probability for the one explosive every 4th day on the new path and the motivation to search were significantly higher than found in experiment 2. Finally, in experiment 4, an attempt was made to recondition the dogs to search on path B. Although trained for 12 daily sessions with one explosive hidden every session, the dogs failed to regain the normal levels of motivation they had shown on both new paths and on the paths that they knew usually contained explosives. The findings reveal that even a very intensively trained EDD will rapidly learn that a specific stretch of path does not contain explosives. The dog will then be less motivated to search and will miss newly placed targets. This learning is specific to the formerly always-clean path and is to some extent irreversible. However, the dog will search and detect normally on new paths even if they are very similar to the always-clean path. The data are discussed in terms of variables affecting renewal. The results suggest that following training designed to make a behavior “context independent,” any extinction training will not generalize beyond that specific context used during the extinction training. In addition, if the behavior is extinguished in a specific context, it will be very difficult to restore that behavior in that context. These conclusions should be considered by anyone attempting to extinguish well-established trans-context behaviors.
|
|
|
Mateo, J. M., & Johnston, R. E. (2003). Kin recognition by self-referent phenotype matching: weighing the evidence. Anim. Cogn., 6(1), 73–76.
|
|
|
Neff, B. D., & Sherman, P. W. (2003). Nestling recognition via direct cues by parental male bluegill sunfish ( Lepomis macrochirus). Anim. Cogn., 6(2), 87–92.
Abstract: Parental care can be costly to a parent in terms of both time and energy invested in the young. In species with cuckoldry or brood parasitism not all of the young under a parent's care are necessarily offspring. In such cases, distinguishing between kin and non-kin, and investing only in the former (nepotism), can be advantageous. Bluegill sunfish ( Lepomis macrochirus) are characterized by paternal care and cuckoldry, and care-providing males appear to show nepotistic behaviours. Here, we investigated nestling recognition in bluegill, determining whether parental males can differentiate between young from their own nest (familiar and related) and young from non-neighbouring nests (unfamiliar and unrelated) using (1) visual and chemical cues, and (2) chemical cues only. In the first experiment, wild-caught parental males were presented with samples of eggs or fry (newly hatched eggs) collected from their own nest or a foreign nest and placed on opposite sides of an aquarium. The time these parental males spent associating with each sample, and their “pecking” behaviours (indicating cannibalism), were recorded. Parental males showed no preference between eggs from their own nest and eggs from a non-neighbouring nest, but they preferred to associate with fry from their own nest over foreign fry. There also was a positive relationship between male body size and the time spent associated with fry from their own nest. Parental males pecked at foreign fry more than 5 times as often as fry from their own nest, though this difference was not statistically significant. In the second experiment, fry that were collected from the nest of a wild-caught parental male or a non-neighbouring nest were placed in different containers and the water from each was dripped into opposite ends of an aquarium. The time the male spent on each side was recorded. In this case, parental males spent more time near the source of water conditioned by unrelated fry, but there was a positive relationship between male condition (fat reserves) and the time he spent near the source of water conditioned by fry from his own nest. Results confirm that chemicals cue nestling recognition by parental male bluegill.
|
|